
Tensorize: Fast Synthesis of Tensor Programs from
Legacy Code using Symbolic Tracing, Sketching and

Solving
Alexander Brauckmann
University of Edinburgh

United Kingdom
alexander.brauckmann@ed.ac.uk

Luc Jaulmes
University of Edinburgh

United Kingdom
ljaulmes@ed.ac.uk

José W. de Souza Magalhães
University of Edinburgh

United Kingdom
jwesley.magalhaes@ed.ac.uk

Elizabeth Polgreen
University of Edinburgh

United Kingdom
elizabeth.polgreen@ed.ac.uk

Michael F. P. O’Boyle
University of Edinburgh

United Kingdom
mob@inf.ed.ac.uk

Abstract
Tensor domain specific languages (DSLs) achieve substan-
tial performance due to high-level compiler optimization
and hardware acceleration. However, to achieve such perfor-
mance for existing applications requires the programmer to
manual rewrite their legacy code in evolving Tensor DSLs.
Prior efforts to automate this translation face significant scal-
ability issues which greatly reduces their applicability to
real-world code.

This paper presents Tensorize, a novel MLIR-based com-
piler approach to automatically lift legacy code to high level
Tensor DSLs using program synthesis. Tensorize uses a sym-
bolic trace of the legacy program as a specification and au-
tomatically selects sketches from the target Tensor DSLs to
drive the program synthesis. It uses an algebraic solver to
rapidly simplify the specification, resulting in a fast, auto-
matic approach that is correct by design. We evaluate Ten-
sorize on several legacy code benchmarks and compare
against state-of-the-art techniques. Tensorize is able to lift
more code than prior schemes, is an order of magnitude
faster in synthesis time, and guarantees correctness by con-
struction.

CCS Concepts: • Software and its engineering→ Retar-
getable compilers; Source code generation.

Keywords: Program Synthesis, Tensor Compilers, Lifting
ACM Reference Format:
Alexander Brauckmann, Luc Jaulmes, José W. de Souza Magalhães,
Elizabeth Polgreen, andMichael F. P. O’Boyle. 2025. Tensorize: Fast
Synthesis of Tensor Programs from Legacy Code using Symbolic

This work is licensed under a Creative Commons Attribution-
NoDerivatives 4.0 International License.
CGO ’25, March 01–05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708956

Tracing, Sketching and Solving. In Proceedings of the 23rd ACM/IEEE
International Symposium on Code Generation and Optimization (CGO
’25), March 01–05, 2025, Las Vegas, NV, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3696443.3708956

1 Introduction
High-level, domain specific languages (DSLs) provide easy
access to high performance. In the particular domain of ten-
sor computation, highly engineered compiler tool-chains are
able to efficiently map programs to heterogeneous hardware.
While compilers can deliver high performance for lan-

guages and frameworks such as NumPy [28], PyTorch [41],
TensorFlow [1], JAX [18], and MLX [27], they are less suc-
cessful with lower-level programs written in C and Python.
To access greater performance, programmers must manu-
ally rewrite their existing code in evolving high-level Tensor
DSLs. Manual rewriting or porting is, however, an error-
prone and time-consuming activity that prevents the large
body of pre-existing legacy code benefiting from emerging
specialized accelerators.

Given this barrier, there have been a number of attempts
at automatically translating, or lifting legacy code to higher-
level DSLs. Unfortunately, such approaches are either highly
restricted, do not guarantee correctness, or cannot scale to
complex tensor programs. Furthermore, they are limited in
the source and target programming languages they consider.

1.1 Existing Schemes
Current approaches can be broadly classified into pattern-
matching based compilation, bottom-up enumerative pro-
gram synthesis, and invariant-based verified lifting.

Pattern Matching. MultiLevelTactics [21] is a compiler-
based scheme that raises operations written in a lower-level
language, here the affine MLIR dialect, into a higher one,
Linalg IR. It is well defined, has the advantage of being fast
and shows significant speedup on certain benchmarks. This
approach, however, requires domain-specific matching rules,

15

https://orcid.org/0000-0001-5774-3970
https://orcid.org/0000-0002-5815-2504
https://orcid.org/0000-0003-2767-1130
https://orcid.org/0000-0001-9032-7661
https://orcid.org/0000-0003-1619-5052
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://doi.org/10.1145/3696443.3708956
https://doi.org/10.1145/3696443.3708956
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696443.3708956&domain=pdf&date_stamp=2025-03-01

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, and M. F. P. O’Boyle

Python Program

Affine IR (MLIR)

affine.for %arg6 = 0 to 150 {
 affine.for %arg7 = 0 to 140 {
 affine.for %arg8 = 0 to 160 {
 affine.store %cst, %arg5[%arg8]
 affine.for %arg9 = 0 to 160 {
 %0 = affine.load
 %arg3[%arg6, %arg7, %arg9]
 %1 = affine.load
 %arg4[%arg9, %arg8]
 %2 = arith.mulf %0, %1 : f64
...

HLO IR (MLIR)

NumPy DSL

Numba-MLIR Tensorize

for x in range(data.shape[1]):
 mean[x] = 0.0
 for k in range(data.shape[0]):
 mean[x] += data[k][x]
 mean[x] /= data.shape[0]

for i in range(data.shape[1]):
 for j in range(data.shape[1]):
 cov[i][j] = 0.0
 for k in range(data.shape[0]):
 cov[i][j] +=
 (data[k][i] - mean[i])
 * (data[k][j] - mean[j])
 cov[i][j] /= data.shape[0] - 1.
 cov[j][i] = cov[i][j]

C Program
for (int i=0; i<I; i++) {
 mean[x] = 0.0
 for (int k=0; k<K; k++:
 mean[x] += data[k][x]
 mean[x] /= J
...

Polygeist Tensorize

1

2

3

4

5

6

mean = np.sum(data, axis=0) / data.shape[0]
data = data - mean

cov = np.dot(data.T, data)
cov = cov / (data.shape[0] - 1.)

%0 = stablehlo.constant dense<0.000000e+00>
%1 = stablehlo.reduce(%arg1 init: %0) across 0
 : (tensor<1400x1200xf32>, tensor<f32>)
 -> tensor<1200xf32>
 reducer(%arg2: tensor<f32>, %arg3: tensor<f32>) {
 %9 = stablehlo.add %arg2, %arg3
 stablehlo.return %9 : tensor<f32>
 }
%2 = chlo.broadcast_divide %1, %arg0
 : (tensor<1200xf32>, tensor<f32>)
 -> tensor<1200xf32>

Figure 1. Tensorize lifts C and Python code to Tensor DSLs, such as NumPy or MLIR HLO, enabling significant speedups.

which are also dialect specific. These have to be manually
added for each new code pattern and dialect and, as we show
in section 8, is both restricted and not a scalable solution.

Enumerative Program Synthesis. There have been sev-
eral attempts at an alternative approach which searches the
target-program grammar to find programs whose behavior
matches the low-level program. They employ bottom-up
enumeration to generate high-level programs of increasing
length [36, 48]. MlirSynth [20] uses this approach within
MLIR [35] to lift programs represented in a low-level affine
IR dialect to the higher-level HLO IR. These approaches suf-
fer from the fundamental problem of bottom-up enumerative
search, namely search time growing exponentially with tar-
get program length. Furthermore, input-output examples
are used as specifications, which is both costly to evaluate
and cannot guarantee correctness over all valid inputs. It is
therefore not scalable and does not ensure correctness.

Verified Lifting. This is another approach applying pro-
gram synthesis techniques to lifting, which proves that source
and target programs are equivalent by synthesizing an induc-
tive loop invariant as well as the target program. Early work
successfully lifted Fortran code to the Halide DSL [31]. Later
work considered other domains [5] and reformulated the
approach within a new LLVM framework [15]. One draw-
back is that the user must define all semantics of source
and target language within a specialized language, making
porting to new targets non-scalable. The most recent work
Tenspiler [43] targets tensor DSLs. However, as we show in
section 8.3 it also suffers from exponential scalability. In an
attempt to mitigate this, Tenspiler relies upon very strong,
hand-coded, heuristics to reduce the search space. However,
this comes at the cost of decreased generality, significantly
reducing the number of programs it can successfully lift to
tensor code.

1.2 Our Approach
Tensorize exploits the power of existing MLIR infrastruc-
ture to lift currently supported low-level languages into any
supported tensor target, without additional user effort. It is
highly scalable, utilizing a novel synthesis algorithm pow-
ered by an algebraic solver. It is guaranteed correct by con-
struction, using symbolic equivalence to derive target pro-
grams. It is robust, does not require hand-crafted search
heuristics, and is able to lift more programs than all existing
approaches.
Programs, once compiled to MLIR, are symbolically ex-

ecuted to generate an expression that forms our synthe-
sis specification. This novel use of symbolic expression as
specification allows the source and target programs to be
described in the same representation, enabling algebraic
equational reasoning and robust normalization of different
syntactic forms of the same computation.

We automatically derive symbolic sketches from the target
language/dialect. These are outlines of partial programs that
we iteratively refine to a complete program. Given these sym-
bolic sketches and the symbolic expression as specification,
we use a solver to determine which of the sketches simplifies
the specification the most and choose it as the specification
for the next synthesis step. This proceeds until a complete
equivalent program is found. Any complete program found
is correct by construction.
This recursive sketch and solve approach finds solutions

an order of magnitude faster than enumerative synthesis
schemes, as it decomposes the synthesis problem into smaller
subproblems. Despite the space of possible Tensor DSL pro-
grams increasing exponentially with the length of the pro-
gram, Tensorize, in practice, solves the benchmarks with
a runtime that is approximately linear with respect to the
number of operations in the target programs, a significant
achievement.

16

Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching ... CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

def f(A, B, C):
 r = 0

 for i in range(N)
 r += A[i]*B[i]

 return r + C

Synthesis by
Algebraic Simplification

MLIR TableGen,
Tensor DSL G

Symbolic
Sketch

Generation

A1*B1 + A2*B2

+ … + An*Bn

+ C

Symbolic
Sketches

NumPy,
MLIR Linalg,
MLIR HLO,
…

Input Program Pin Symbolic Expression
SymIn

add(??, C), dot(A,B)

Tensor Program

Python,
C
…

add

Symbolic Algebraic Solver

add(??, C)
 → ?? + C

add(A, ??)
 → A1 + ??

mul(B, ??)
 → B1 * ??

dot(A,B)
 → A1*B1 + A2*B2
 + … + An*Bn

mul

dot
…

…
Grammar

Enumerator

Symbolic
Program
Capturing

add(dot(A, B), C)

Figure 2. Overview of the Tensorize Synthesis Flow.

1.3 Contributions
This paper makes the following contributions:
• A novel scalable synthesis algorithm that uses an algebraic

solver to lift programs from symbolic traces.
• A synthesizing, correct by construction MLIR-based lifter

targeting IRs and Tensor DSLs.1
• A large scale systematic evaluation of state of the art tensor

program lifting.
• Faster synthesis times and greater coverage than existing

techniques.
• 4.1× to 4102× geo-mean speedups on a range of platforms.

2 Motivating Example
Tensorize is implemented as an MLIR tool, which enables
it to support various legacy programming languages as in-
put. As an example, consider PolyBench’s Python and C
implementations [3, 42] of the covariance computation in 1

and 2 of Figure 1. While they are straightforward, they are
not optimized for performance. To improve efficiency, de-
velopers can apply parallelization techniques – either by
manually annotating parallelizable loops using frameworks
like Numba [33] or through automatic parallelizing compil-
ers like Polly [26].

As shown in 6 of Figure 1, this results in speedups of 29×
(Numba-Parallel) and 148× (Polly-Parallel) over the LLVM
-O3 sequential baseline (lowered to LLVM through Clang
and Numba) on an AMD Ryzen 9 7950X.

2.1 Tensorize: Lifting for Performance
Tensorize takes a different approach. Rather than paralleliz-
ing and lowering the program to hardware, it first lifts the
code to a high-level Tensor DSL. This is achieved in a fully
automatic way, by compiling it to MLIR’s affine IR using
the Polygeist (C) or Numba-MLIR (Python) frontends. The
affine IR code 3 is then lifted to an equivalent Tensor DSL
program, as shown in 4 and 5 of Figure 1. We then lever-
age the power of Tensor DSL compilers, in this case NumPy,
which results in a speedup of 436×.

1Tensorize source code: https://doi.org/10.5281/zenodo.14095398.

3 Overview
Tensorize lifts low-level source programs to high-level Ten-
sor programs based on two key insights. Firstly, we use sym-
bolic execution to generate both the source specification and
the potential target program in the same symbolic represen-
tation. Secondly, we use program sketches to iteratively sim-
plify our synthesis specification. Crucially, we use a solver
operating on a common symbolic representation to deter-
mine whether a sketch does simplify the specification. The
approach of Tensorize, as shown in Figure 2, consists of
three main stages:

Capturing the Symbolic Program. The source program,
𝑃𝑖𝑛 is compiled into MLIR using Polygeist [39] (C) or Numba-
MLIR [30] (Python). These frontends generate representa-
tions in the affine IR dialect, which models affine static
control-flow programs, where loop bounds and conditions
are affine relations of the inputs. Only programs that are
representable in this dialect are candidates for lifting to a
higher-level Tensor DSL. The source program is symbolically
executed to obtain an expression, 𝑆𝑦𝑚𝑖𝑛 (Section 4). For ex-
ample, the Python program 𝑃𝑖𝑛 on the left of Figure 2, which
calculates a vector dot product and an addition, is translated
into affine IR and symbolically executed to give the symbolic
expression: 𝑆𝑦𝑚𝑖𝑛 = 𝐴1𝐵1 +𝐴2𝐵2 + · · · +𝐴𝑛𝐵𝑛 +𝐶 .
This symbolic expression is the source specification for

the synthesis algorithm.

Generating Symbolic TensorDSL Sketches. Wegenerate
sketches that are automatically derived from the target Ten-
sor DSL grammar (Section 5). Sketches are short programs
with symbolic placeholder variables ?? in place of certain
inputs. We symbolically execute each sketch on a combina-
tion of symbolic placeholder variables and program inputs to
generate a set of expressions referred to as symbolic sketches.
The placeholder variables are used as extension points for
later program synthesis. Having the sketches in the same
representation as the target program enables step-wise sim-
plification of the synthesis specification. The generation of
sketches is a one-time effort for each target DSL of interest.

17

https://doi.org/10.5281/zenodo.14095398

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, and M. F. P. O’Boyle

©«
𝑐𝑜𝑣0,0 · · ·
𝑐𝑜𝑣1,0 · · ·

...
. . .

𝑐𝑜𝑣𝑚−1,0 · · ·

ª®®®®¬
=

©«
(𝐴0,0−𝐵0) (𝐴0,0−𝐵0)+(𝐴1,0−𝐵0) (𝐴1,0−𝐵0)+···+(𝐴𝑛−1,0−𝐵0) (𝐴𝑛−1,0−𝐵0)

𝐶
· · ·

(𝐴0,1−𝐵1) (𝐴0,0−𝐵0)+(𝐴1,1−𝐵1) (𝐴1,0−𝐵0)+···+(𝐴𝑛−1,1−𝐵1) (𝐴𝑛−1,0−𝐵0)
𝐶

· · ·
...

. . .
(𝐴0,𝑚−1−𝐵𝑚−1) (𝐴0,0−𝐵0)+(𝐴1,𝑚−1−𝐵𝑚−1) (𝐴1,0−𝐵0)+···+(𝐴𝑛−1,𝑚−1−𝐵𝑚−1) (𝐴𝑛−1,0−𝐵0)

𝐶
· · ·

ª®®®®®¬
Figure 3. Capturing the symbolic representation of the 2nd part of the covariance computation from Figure 1 box 1 by
executing it on symbolic tensors A, B which correspond to data and mean respectively.

On the right-hand-side of Figure 2, short programs from
the target dialects are symbolically executed with place-
holder variables to give symbolic sketches. As an example,
add(A,B) is a program that adds two tensors, 𝐴 + 𝐵. If we
replace B with a symbolic variable or hole ?? , then we have
a program sketch with a symbolic expression 𝐴 + ?? , where
?? can be a concrete expression such as 𝐶 ∗ 𝐷 or another
sketch such as 𝐶 ∗ ?? .
The symbolic language for sketches is the same as that

used for source specification, allowing algebraic simplifica-
tion during the synthesis.

Synthesis Driven byAlgebraic Simplification. The core
of Tensorize’s synthesis method is a novel top-down syn-
thesis algorithm (Section 6), which uses algebraic solving to
determine which sketches are useful. By solving symbolic
algebra problems, we incrementally refine the specification
by substituting in the symbolic sketch, and then recurse on
emerging symbolic hole expressions. This process continues
until a complete program is constructed that is equivalent
to the specification.
In Figure 2, each of the 4 potential symbolic sketches is

matched to the symbolic expression and a symbolic solver is
invoked to determine the sketch that most reduces the source
expression. This is applied incrementally, first producing
add(??,C), then dot(A,B). In combination they result in
the Tensor DSL program add(dot(A,B),C).

4 Symbolic Program Capturing
Translating the input program 𝑃𝑖𝑛 into a symbolic repre-
sentation 𝑆𝑦𝑚𝑖𝑛 enables the incremental synthesis of the
equivalent Tensor program.

After initialization, we commence symbolic execution act-
ing on symbolic inputs. We currently restrict attention to
static control-flow programs representable in affine IR. Ex-
ecution begins with the set of initial symbolic inputs and
evaluates the program statements using the symbolic vari-
ables. At the end of execution, instead of a concrete output
value, the result, 𝑆𝑦𝑚𝑖𝑛 , will be a symbolic expression over
the input symbols.
As an example consider, the second part of the program

in Figure 1, box 1 . The corresponding symbolic execution

traces are shown in Figure 3, using symbolic tensors 𝐴 and
𝐵 as inputs to data and mean. On symbolic execution of the
triple loop nest, we obtain for instance for 𝑐𝑜𝑣00 the symbolic,
algebraic expression ((𝐴0,0−𝐵0) (𝐴0,0−𝐵0)+(𝐴1,0−𝐵0) (𝐴1,0−
𝐵0) + · · · + (𝐴𝑚−1,0−𝐵0) (𝐴𝑚−1,0−𝐵0))/𝐶 and for 𝑐𝑜𝑣𝑚−1,𝑚−1
the symbolic expression ((𝐴0,𝑚−1 − 𝐵𝑚) (𝐴0,𝑚−1 − 𝐵𝑚) +
(𝐴1,𝑚−1−𝐵𝑚) (𝐴1,𝑚−1−𝐵𝑚)+· · ·+(𝐴𝑛−1,𝑚−1−𝐵𝑚−1) (𝐴𝑛−1,𝑚−1−
𝐵𝑚−1))/𝐶 .

This symbolic expression is the specification of the origi-
nal program and any lifted program must be algebraically
equivalent to it.

5 Symbolic Sketch Generation
Our core algorithm builds on synthesis by sketching [51].
In conventional sketching synthesis, the user provides a
sketch, i.e., a program with holes, and the solver searches for
expressions to fill the holes such that the program satisfies
the provided specification. In our approach, we automatically
generate the sketches, and iteratively search for sketches that
incrementally simplify the symbolic specification.

5.1 Target Grammar
We use MLIR’s TableGen dialect definitions to automati-
cally construct a target grammar that over-approximates the
language of valid expressions [20]. This grammar is then
enumerated to generate potential target sketches.

The grammar is context-free, and so production rules can
be applied to non-terminal symbols, regardless of context.
As MLIR dialects are not normally context-free, this gram-
mar over-approximates the space of semantically correct
programs. Hence, some generated programs are not valid,
and we use MLIR’s static checks to filter these out. As an
example while reduce(A) across 5, is a syntactically correct
program, it is semantically incorrect if A is a 2D tensor.
The semantics are captured by using existing MLIR com-

piler passes, that lower the sketches into an abstraction com-
patible with SymPy’s operational semantics, which enables
symbolic execution.

Given that NumPy also is an important Tensor DSL, but is
currently not available as an MLIR dialect, we have provided
a NumPy target grammar as well and use the lowerings from
NumPy to MLIR from the JAX compiler [18].

18

Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching ... CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Algorithm 1 Sketch Generation using Bottom-Up Enumer-
ation of Grammar
1: function GenSketches(𝑓 , 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , 𝑑𝑒𝑝𝑡ℎ = 2)
2: 𝑆 ← constants and program inputs
3: for 𝑑 = 1 to 𝑑𝑒𝑝𝑡ℎ do
4: for 𝑜𝑝 in 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
5: 𝑜𝑝𝑛𝑑𝑠 ← filterTypes(𝑆, 𝑜𝑝)
6: 𝑎𝑡𝑡𝑟𝑠 ← genAttrs(𝑜𝑝)
7: for 𝑠 in cartesianProduct(𝑜𝑝𝑛𝑑𝑠 , 𝑎𝑡𝑡𝑟𝑠) do
8: if not staticCheck(𝑠) then
9: continue
10: 𝑆 ← 𝑆 ∪ 𝑠
11: for 𝑠 ∈ 𝑆 do
12: for 𝑥𝑖 ∈ occurrences of 𝑥1, . . . 𝑥𝑛 in 𝑠 do
13: 𝑆 ← 𝑠 [𝑥𝑖/𝑣1]
14: for 𝑥 𝑗 ∈ occurrences of 𝑥1, . . . 𝑥𝑛 in 𝑠 do
15: if 𝑥𝑖 ≠ 𝑥 𝑗 then
16: 𝑆 ← 𝑠 [𝑥𝑖/𝑣1, 𝑥 𝑗/𝑣2]
17: 𝑆𝑘 ← ∅
18: for 𝑠 ∈ 𝑆 do
19: 𝑆𝑘 ← (𝑠, SymEx(𝑠))
20: return 𝑆𝑘

Program stubs

Sketches

divide(𝐴, 𝐵)

(𝐴0,0
𝐵
· · ·

...
. . .

)
SymEx

divide(𝐴, 𝑉)

(𝐴0,0
𝑉
· · ·

...
. . .

)
SymEx

divide(𝑉 , 𝐵)

(𝑉0,0
𝐵
· · ·

...
. . .

)
SymEx

divide(𝑉 , 𝑌)

(𝑉0,0
𝑌
· · ·

...
. . .

)
SymEx

Figure 4. Example generation of symbolic program stubs
and sketches for two Tensor DSL operations.

5.2 Sketch Generation
We begin by generating a set of program stubs. A program
stub is a short but complete program derived from the gram-
mar containing only terminal symbols. Sketches are created
by systematically replacing terminal symbols with place-
holder variables.
The sketch generation, detailed in Algorithm 1, starts by

generating all program stubs with a parse tree of depth at
most 3, i.e., that can be enumerated with no more than 2 iter-
ations of the algorithm’s outer loop. Note that this does not
limit us to synthesizing only programs of depth 3, because
our synthesis algorithm combines multiple sketches together.
This enumeration algorithm starts with all program stubs
that are constants or inputs. At each iteration, it combines
operations with previously generated stubs to generate more
complex ones. We then use MLIR’s static checks to discard
any program stubs that are invalid Tensor programs.

We then use our set of program stubs to generate sketches
that contain holes that can be expanded.

Definition 5.1 (Tensor DSL Sketches). We define a sketch
to be the result of taking a program stub 𝑠 and replacing zero
or more concrete terminals in the stub with fresh symbols
that can be replaced with other program stubs.
As an example consider Figure 4. Here the terminal sym-

bols tensor 𝐴 and scalar 𝐵 are replaced with symbolic vari-
ables 𝑉 and 𝑌 which act as placeholders to be replaced by
other stubs. For instance 𝑉 could be replaced with 𝑎𝑑𝑑 (𝑥, 𝑧)
and 𝑌 replaced with 𝑝𝑜𝑤𝑒𝑟 (𝑤, 2) where 𝑥,𝑦,𝑤 are scalars or
any other program stub. Executing sketches results in sym-
bolic expressions that additionally contain the new place-
holder variables, here 𝑉 and 𝑌 .

The symbols that appear in the sketch can be considered
as "holes" that can be later expanded. Thus, a sketch is an
expression

𝑠 [𝑥𝑖/𝑣𝑖 , 𝑥 𝑗/𝑣 𝑗 , . . .],
where:
• 𝑠 is a valid expression in the grammar 𝐺 ,
• {𝑥𝑖 , 𝑥 𝑗 , . . .} is a subset of the program terminal vari-
ables, i.e., 𝑥𝑖 , 𝑥 𝑗 , . . . ∈ {𝑥1, . . . , 𝑥𝑛},
• {𝑣𝑖 , 𝑣 𝑗 , . . .} is a set of fresh symbols (referred to as
placeholder variables), and
• 𝑒 [𝑥/𝑣] denotes the result of replacing all occurrences
of 𝑥 in expression 𝑒 with 𝑣

Each sketch is also accompanied by a symbolic sketch that
results from symbolically executing the sketch.

For each program stub, we generate all possible sketches
that can be generated by replacing the inputs with place-
holder variables. We use the symbolic sketches to guide our
synthesis but we keep the mapping to the corresponding
sketches in the Tensor DSL, in order to reconstruct the Ten-
sor DSL program at the end of the synthesis process.

6 Synthesis by Symbolic Simplification
Instead of searching for a program in the target grammar
𝐺 that is equivalent to our full input specification 𝑆𝑦𝑚𝑖𝑛 ,
we incrementally search simplifying sketches. A simplifying
sketch is one where substituting an expression in place of
the placeholder variables results in a simpler expression than
the input specification expression.

Our method is similar to classic top-down search methods
synthesis [8], but our search is guided by selecting sketches
that reduce the complexity of the specification.

Example of Sketch Simplification. Figure 5 shows an
example of the synthesis algorithm. The input specification is
the full symbolic expression of the input program (shown in
detail in Figure 3). For simplicity, we show only the left-most
element (𝐴0,0−𝐵0) (𝐴0,0−𝐵0) + (𝐴1,0−𝐵0) (𝐴1,0−𝐵0))/𝐶 . The
synthesis algorithm begins by selecting the sketch div(X,C),
which simplifies the expression by removing the divisor C,

19

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, and M. F. P. O’Boyle

𝑐𝑜𝑣 =

(
((𝐴0,0 − 𝐵0) (𝐴0,0 − 𝐵0) + (𝐴1,0 − 𝐵0) (𝐴1,0 − 𝐵0))/𝐶 · · ·

...
. . .

)

𝑐𝑜𝑣 = div(

(
(𝐴0,0 − 𝐵0) (𝐴0,0 − 𝐵0) + (𝐴1,0 − 𝐵0) (𝐴1,0 − 𝐵0) · · ·

...
. . .

)
, C)

𝑐𝑜𝑣 = div(tensordot(

(
𝐴0,0 − 𝐵0 · · ·

𝐴1,0 − 𝐵0
. . .

)
, A - B, axes=(0, 0)), C)

𝑐𝑜𝑣 = div(tensordot(A - B, A - B, axes=(0, 0), C))

A - B
𝐴0,0 − 𝐵0

tensordot(X, A - B, axes=(0, 0))
𝑋0,0 (𝐴0,0 − 𝐵0) + 𝑋1,0 (𝐴1,0 − 𝐵0)

div(X, C)
𝑋0,0/𝐶

Tensor DSL sketch:
Symbolic sketch:

Figure 5. Example expansion tree of the synthesis algorithm.
Using the sketches on the edges, the symbolic expressions
are incrementally transformed into a Tensor program . Re-
cursive expansion proceeds until symbolic expressions are
eliminated.

resulting in (𝐴0,0 − 𝐵0) (𝐴0,0 − 𝐵0) + (𝐴1,0 − 𝐵0) (𝐴1,0 − 𝐵0).
This simplification produces a partial Tensor DSL program
and a reduced specification.
n The algorithm then recurses using the simplified spec-

ification, progressively translating the symbolic specifica-
tion to a Tensor program, until the specification matches a
leaf sketch. In this example, the sketch tensordot(X, A-B,
axes=(0,0)) is selected next, as it further simplifies the
expression to 𝐴0,0 − 𝐵0. The simplified expression finally
matches the symbolic expression of the leaf sketch A-B.

The resulting Tensor DSL program is div(tensordot(A-B,
A-B, axes=(0,0),C)), which is symbolically equivalent to
the input program.

Definition 6.1 (Simplifying Sketches). We have a speci-
fication of the form ∃𝑓 .∀®𝑥 .𝑓 (®𝑥) = 𝑆𝑝𝑒𝑐 , where 𝑆𝑝𝑒𝑐 is an
expression that reasons about the variables ®𝑥 . 𝑆𝑝𝑒𝑐 is derived
from symbolic execution of the source program. A symbolic
sketch is an expression 𝑠 that contains the input variables
®𝑥 and one or more placeholder variables ®𝑣 = {𝑣1, . . . 𝑣𝑛}. A
simplifying sketch is a sketch such that:

∃𝑒1, . . . 𝑒𝑛, 𝑠 [𝑣1/𝑒1, . . . 𝑣𝑛/𝑒𝑛] = 𝑆𝑝𝑒𝑐 , and

1
𝑛

𝑛∑︁
𝑖=1
|𝑣𝑎𝑟 (𝑒𝑖) |𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑒𝑖) < |𝑣𝑎𝑟 (𝑆𝑝𝑒𝑐) |𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑆𝑝𝑒𝑐)

where:
• 𝑒1 . . . 𝑒𝑛 are expressions that can be used to replace
placeholder variables in 𝑠 to make 𝑠 equivalent to 𝑆𝑝𝑒𝑐 ,
• 𝑠 [𝑣1/𝑒1, . . . 𝑣𝑛/𝑒𝑛] indicates the result of substituting
𝑣1 for 𝑒1, 𝑣2 for 𝑒2 etc., in the sketch 𝑠 ,
• |𝑣𝑎𝑟 (𝑒) |, and |𝑣𝑎𝑟 (𝑆𝑝𝑒𝑐) | are the number of unique
program inputs in each expression, and

(
𝐴0,0 + 𝐵0,0 𝐵0,1
𝐴1,0 + 𝐵1,0 𝐴1,1 + 𝐵11

)
(
𝐴0,0 0
𝐴1,0 𝐴1,1

)add(X, B)

𝑆𝑖𝑚𝑝 = 3
(
𝐴0,0 𝑀𝑎𝑠𝑘𝑒𝑑

𝐴1,0 𝐴1,1

)where(tri(X),B,0)

𝑆𝑖𝑚𝑝 = 2.25
𝑆𝑖𝑚𝑝 = 7

Figure 6. Example of simplifying sketches and their simpli-
fication scores.

• 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑒) and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑆𝑝𝑒𝑐) are the average density
values for all tensors/matrices in each expression, i.e.,
the proportion of elements in all tensor/matrices that
are not masked. This is relevant for Tensor DSL opera-
tions that apply irregular updates to the specification.

We refer to 𝑆𝑖𝑚𝑝 (𝑠) = 1
𝑛

∑𝑛
𝑖=1 |𝑣𝑎𝑟 (𝑒) |𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑒) as the

simplifying score for a sketch 𝑠 . We refer to 𝑒1 . . . 𝑒𝑛 as the
simplifying expressions that correspond to the simplifying
sketch 𝑠 . Note that the simplifying expressions will never
contain any placeholder variables.

Example of Simplification Score. Consider the example
in Figure 6 of a tensor with symbolic expressions as speci-
fication. The initial specification on the top has a score of
7, as it has |{𝐴0,0, 𝐴1,0, 𝐴1,1, 𝐵0,0, 𝐵0,1, 𝐵1,0, 𝐵1,1}| = 7 unique
symbols in a full tensor. Applying a addition sketch would
result in a simplification score of |{𝐴0,0, 𝐴1,0, 𝐴1,1}| = 3, there-
fore qualifies as a simplifying sketch. The masking sketch
however masks one element in the resulting tensor, there-
fore has a reduced density of 3

4 , resulting in a better score of
|{𝐴0,0, 𝐴1,0, 𝐴1,1}| ∗ 3

4 = 2.25.

6.1 Synthesis Algorithm
Our synthesis algorithm iteratively searches for simplifying
sketches, and updates the specification using these sketches,
until a complete program is found. The core algorithm is
shown in Algorithm 2.
Let us consider first the case where each sketch contains

only one symbolic variable to be substituted. Let 𝑆𝑝𝑒𝑐𝑖 de-
note the specification at iteration 𝑖 , 𝑠𝑖 denote the simplifying
sketch found in iteration 𝑖 , 𝑒𝑖 denote the corresponding sim-
plifying expression, and 𝑣𝑖 denote the placeholder variable
in 𝑠𝑖 . We initialize the loop with 𝑆𝑝𝑒𝑐 = 𝑆𝑦𝑚𝑖𝑛 , and a set of
sketches 𝑆𝑘 , generated as per the description in Section 5.
In each iteration, we iterate through all sketches in 𝑆𝑘

and check whether they are simplifying sketches. If they
are simplifying sketches, we rank them according to their
simplifying score. We take the sketch with the lowest value
for 𝑆𝑖𝑚𝑝 (𝑠) to be 𝑠𝑖 , and its corresponding expression 𝑒 to
be 𝑒𝑖 . We then recursively call the synthesis process with an
updated 𝑆𝑝𝑒𝑐 = 𝑒𝑖 , to search for a sketch that simplifies 𝑒𝑖 .
If the sketch found is complete, i.e., contains no placeholder

20

Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching ... CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Algorithm 2 Core Synthesis Algorithm
1: function synthesize(𝑓 ,𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)
2: 𝑠𝑝𝑒𝑐 ← symEx(𝑃𝑖𝑛)
3: 𝑠𝑘𝑒𝑡𝑐ℎ𝑒𝑠 ← genSketches(𝑃𝑖𝑛,𝐺)
4: 𝑝𝑟𝑜𝑔, ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← symSketch(𝑠𝑝𝑒𝑐, 𝑠𝑘𝑒𝑡𝑐ℎ𝑒𝑠, 0, {})
5: return buildAST(𝑝𝑟𝑜𝑔, ℎ𝑖𝑠𝑡𝑜𝑟𝑦)

variables, we return the expression:

𝑠0
[
𝑣0

/
𝑠1

[
𝑣1

/
𝑠2

[
𝑣2/𝑠3 [𝑣3/. . . 𝑠𝑖]

]]]
This is the expression obtained by recursively substituting

the symbolic variables with the sketches obtained over all
iterations 0 to 𝑖 , assuming that a complete programwas found
at iteration 𝑖 . If no complete program (without holes) is found
before we hit a pre-defined depth bound, we backtrack and
explore the sketch with the next-best simplifying score.

Sketches with Multiple Holes. The algorithm can be sim-
ply extended to sketches with multiple holes, by calculating
the 𝑆𝑖𝑚𝑝 score across all holes in the sketch, and iteratively
handling the holes one by one when we update the specifi-
cation (cf. Algorithm 3).

6.2 Symbolic Solving
Our approach is enabled by a symbolic solver that can find
the expressions 𝑒1 . . . 𝑒𝑛 in the equation 𝑠 [𝑣1/𝑒1, . . . 𝑣𝑛/𝑒𝑛] =

𝑆𝑝𝑒𝑐 . We first apply a static check that discards sketches
that do not contain any overlapping variables and therefore
cannot possibly simplify the specification. We then select
sketches to consider using simple pattern matching. If no
sketch is found at this point, the above query is solved using
SymPy [38], a symbolic solver for systems of linear and
polynomial equations. SymPy treats all numbers as reals,
and so our results are guaranteed to be equivalent based on
this assumption but may not preserve IEEE floating point
equivalence. Through combining static checks and pattern
matching with symbolic equation solving, we are able to
optimize the runtime of the synthesis process.

Example of Solver Usage. Consider the specification ex-
pression 2𝐴 + 2𝐵 and a sketch 2𝑣 . To find the expression to
be in the placeholder of this sketch, we create the symbolic
equation: 2𝐴 + 2𝐵 = 2𝑣 . Solving for 𝑣 gives: 𝑣 = 𝐴 + 𝐵.

In this case, a symbolic solver is required, because a syntatic
pattern matcher would’ve failed on the syntactic differences.

6.3 Correctness Guarantees
Tensorize is sound, i.e., any result returned by the syn-
thesis algorithm is guaranteed to be correct, provided we
assume that 1) the symbolic execution accurately and fully
captures the behavior of the input program and the sketches;
and 2) the symbolic solver called at line 5 and line 10 of
Algorithm 3 is sound and never returns an incorrect result.

Algorithm 3 Synthesis Driven by Simplifying Sketches
1: function symSketch(𝑆𝑝𝑒𝑐 , 𝑠𝑘𝑒𝑡𝑐ℎ𝑒𝑠 , 𝑑𝑒𝑝𝑡ℎ, ℎ𝑖𝑠𝑡𝑜𝑟𝑦)
2: if 𝑑𝑒𝑝𝑡ℎ > 𝑙𝑖𝑚𝑖𝑡 then
3: return nil
4: for (𝑠, 𝑛) in 𝑠𝑘𝑒𝑡𝑐ℎ𝑒𝑠 do
5: if isComplete(𝑠) ∧ 𝑠 |= 𝑆𝑝𝑒𝑐 then
6: ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← {ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝑛};
7: return (𝑠, ℎ𝑖𝑠𝑡𝑜𝑟𝑦)
8: 𝑄 ← ∅ ⊲ Queue of sketches
9: for (𝑠, 𝑛) in 𝑠𝑘𝑒𝑡𝑐ℎ𝑒𝑠 do
10: if ∃𝑒1, . . . 𝑒𝑛 .𝑠 [𝑣1/𝑒1, . . . 𝑣𝑛/𝑒𝑛] |= 𝑆𝑝𝑒𝑐 then
11: 𝑆𝑖𝑚𝑝 ← 1

𝑛

∑𝑛
𝑖=1 |𝑣𝑎𝑟 (𝑒𝑖) | ∗ 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 (𝑒𝑖)

12: if 𝑆𝑖𝑚𝑝 < |𝑣𝑎𝑟 (𝑆𝑝𝑒𝑐) | ∗𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 (𝑆𝑝𝑒𝑐) then
13: 𝑞 ← (𝑆𝑖𝑚𝑝, (𝑠, 𝑛), [𝑣1 . . . 𝑣𝑛], [𝑒1 . . . 𝑒𝑛])
14: 𝑄 ← 𝑄 ∪ 𝑞
15: while 𝑄 ≠ ∅ do
16: (𝑆𝑖𝑚𝑝, (𝑠, 𝑛), 𝑣𝑎𝑟𝑠, 𝑒𝑥𝑝𝑟𝑠) ← 𝑄.𝑝𝑜𝑝 ()
17: ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← {ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝑛}, 𝑛𝑒𝑥𝑡ℎ ← {}, 𝑝𝑟𝑜𝑔← 𝑠

18: 𝐹𝑎𝑖𝑙𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

19: for 𝑖 ∈ {1 . . . 𝑛} do
20: (𝑛𝑒𝑤𝐸𝑥𝑝𝑟, ℎ) ←

symSketch(𝑒𝑥𝑝𝑟𝑠 [𝑖], 𝑠𝑘𝑒𝑡𝑐ℎ𝑒𝑠, 𝑑𝑒𝑝𝑡ℎ + 1, ℎ𝑖𝑠𝑡𝑜𝑟𝑦)
21: if 𝑛𝑒𝑤𝐸𝑥𝑝𝑟 |= 𝑛𝑖𝑙 then
22: 𝐹𝑎𝑖𝑙𝑒𝑑 ← 𝑡𝑟𝑢𝑒

23: ℎ𝑖𝑠𝑡𝑜𝑟𝑦.𝑝𝑜𝑝 ()
24: break
25: else
26: 𝑝𝑟𝑜𝑔← 𝑝𝑟𝑜𝑔[𝑣𝑎𝑟𝑠 [𝑖]/𝑛𝑒𝑤𝐸𝑥𝑝𝑟]
27: 𝑛𝑒𝑥𝑡ℎ ← {𝑛𝑒𝑥𝑡ℎ, ℎ}
28: if not 𝐹𝑎𝑖𝑙𝑒𝑑 then
29: ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← {ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝑛𝑒𝑥𝑡ℎ}
30: return (𝑝𝑟𝑜𝑔, ℎ𝑖𝑠𝑡𝑜𝑟𝑦)
31: return 𝑛𝑖𝑙

Assumption 1 holds provided the input program does not
contain data-dependent control flow (an exception are se-
lection statements), and the input data structures are large
enough to fully capture the behavior of the program. Addi-
tionally, note that symbolic execution effectively captures
runtime program state, including aliasing and loop-carried
dependencies. Assumption 2 holds for real arithmetic, but
does not hold for IEEE floating-point semantics, which are
also not preserved by aggressive compiler optimization.

7 Experimental Setup
This sections describes the experimental methodology used
to evaluate Tensorize.

7.1 Benchmarks
We selected the union of all benchmarks used in the most
recent closest related works on Tensor DSL lifting [20, 36, 43]
with no cherry-picking. The total of 99 C benchmarks can be

21

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, and M. F. P. O’Boyle

grouped into 11 categories as shown in Table 1, all of which
can be expressed in Tensor DSLs. They vary significantly in
complexity, such as the number of combined operations or
the loop depth, thus provide a comprehensive benchmark of
the accuracy and scalability of Tensorize and other lifting
methods.

7.2 Lifting Methods
To critically evaluate Tensorize, we selected representa-
tive alternative lifting approaches and compared against di-
rect LLVM compilation and Polly parallelizing compilation.
Each selected lifting method represents the state-of-the-art
in pattern matching, bottom-up enumerative synthesis and
verified lifting.
• LLVM-O3:General-purpose lowering compiler, at highest

optimizaiton level [34].
• Polly: Polyhedral cache and parallelism optimizing com-

piler [26]. Reported best of -polly and -polly-parallel.
• MultiLevel Tactics: Pattern matching MLIR lifter [21].
• MlirSynth: State-of-the-art bottom-up synthesizer for
MLIR dialects [20].
• Tenspiler: State-of-the-art verified lifting synthesizer for
Tensor DSLs [43].
• Tensorize:Our symbolic simplification synthesis approach.

7.3 Tensor DSL Compilers
Once the code is lifted, there are a number of different Ten-
sor compilers available that can target hardware. We use 4
different compilers and evaluate their performance.
• NumPy: Runs individual operations as kernel calls. [28].
• JAX: Captures computation graph and optimizes it using

the Accelerated Linear Algebra (XLA) compiler. [18].
• PyTorch: Runs individual operations similar to NumPy,
with additional support for GPU execution. [41].
• PyTorch Compiled: Captures computation graph and

optimizes it with the PyTorch-Inductor compiler [9].

Table 1. Benchmarks used to evaluate lifting methods.

Suite Workload Benchmarks
blas [16] Linear Algebra 3
blend [6] Image Processing 12
darknet [45] Machine Learning 14
dsp [29] Image Processing 15
dspstone [58] Signal Processing 5
llama [10] Machine Learning 11
makespeare [46] Linear Algebra 1
mathfu [11] Math 12
polybench [42] Data Mining, Lin. Alg. 15
simpl_array [50] Array Programming 5
utdsp [47] Signal Processing 6
TOTAL 99

7.4 Methodology
Each method is evaluated for its ability to find an equiv-
alent high-level Tensor DSL program for the C program
input, within a 60 second timeout. Tenspiler synthesizes
programs in the NumPy DSL; MultiLevel Tactics generates
MLIR-Linalg; while MlirSynth generates MLIR-HLO. Ten-
sorize can synthesize both MLIR-HLO and NumPy. These
Tensor DSLs are at the same level of abstraction and have a
comparable set of operations but to ensure fair comparison
between lifters we evaluate all lifted code with the 4 tensor
DSL compilers described above. The performance of each
approach depends solely on the number of programs lifted,
not the Tensor DSL targeted.

7.5 Systems and Software Libraries
All runtime measurements were performed on two systems.
The first is an AMD system, with a Ryzen 9 7950X CPU with
32 threads and a Nvidia GTX 1080TI GPU. This system has
32GB of memory, clocked at 6,000 MT/s. The second system
has an Intel Core i7-7800K CPU with 12 threads and 16GB
of memory, clocked at 4,300 MT/s. All lifting experiments
were run on the AMD platform. Both systems run Ubuntu
22.04. For compiler and libraries, we use Clang 18, GCC 11.4,
Numba 0.60.0, NumPy 2.0.1, PyTorch 2.4.0 and JAX 0.4.31.

8 Evaluation
We first evaluate the impact of lifting on runtime perfor-
mance before analyzing the success rate of each lifter.

8.1 Speedups on Benchmarks
The end goal of Tensor lifting is to improve programs runtime
performance. Figure 7 shows the geometric mean speedup
for the various approaches, on 3 different platforms. For each
lifting method, we compile any resulting high level code with
the 4 Tensor DSL compilers, described in section 7.3, and
present results from the best performing of the 4 compilers
to ensure a fair evaluation. A detailed breakdown of backend
performance can be found in section 8.5
As an initial, Polly, a parallelizing compiler is able to

achieve approx. a 2× speedup on the CPU platforms, outper-
forming MultiLevelTactics on both platforms and Tenspiler
on the Intel platform.

As we move to the AMD CPU and the NVIDIA GPU, the
three synthesizers, Tensorize, Tenspiler and MlirSynth are
able to achieve increasing levels of performance. This is due
to the amount of hardware parallelism available which the
Tensor DSL compilers are able to exploit.

Tensorize consistently provides the highest speedups,
achieving an overall geometric mean speedup of 4.1× on
Intel, 11.7× on AMD, and 4102× on NVIDIA. This equates
to between a 1.7× and 4.3× improvement over the next best

22

Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching ... CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

2.5x

1.5x

4.1x

1.9x
1.3x

1.0x

6.3x

1.7x

11.7x

2.0x
2.4x

1.0x

Intel I7−8700K AMD Ryzen 9 7950X

LLVM−O3 Polly

MultiLevelTactics
Tenspiler

MlirSynth
Tensorize

LLVM−O3 Polly

MultiLevelTactics
Tenspiler

MlirSynth
Tensorize

11

10

Method

G
eo

m
ea

n
sp

ee
du

p
(lo

g)

952.9x

3.1x

4102.2x

120.1x

1.0x

NVIDIA GTX 1080Ti (AMD platform)

LLVM−O3

MultiLevelTactics
Tenspiler

MlirSynth
Tensorize

11

10

100

1 000

Method

G
eo

m
ea

n
sp

ee
du

p
(lo

g)

Figure 7. Speedups of lifting methods and Tensorize over LLVM-O3 on different compute devices. For each lifting method
we show the performance achieved when using the best backend Tensor DSL compiler available.

0

25

50

75

100

blas blend darknet dsp dspstone llama makespeare mathfu polybenchsimpl_array utdsp
Benchmark Suite

Su
cc

es
s

ra
te

 in
 % 76%

11%

96%

63%

Total

Method
Tensorize

MlirSynth

Tenspiler

MultiLevelTactics

Figure 8. Success rates of lifting methods and Tensorize on 11 benchmark suites within a 60 second timeout.

performing scheme MlirSynth. The relatively poorer perfor-
mance of the other lifting schemes, is due to their failure to
lift enough programs which is detailed in the next section.

8.2 Synthesizer Performance
The different performance of lifting-based methods is due
to varying success rates on the benchmarks, as shown in
Figure 8. MultiLevelTactics achieves the lowest success rate,
lifting just 11% of the benchmarks. This low success rate is
due to incompleteness of pattern-matching rules – a com-
mon disadvantage of rule-based methods. Further, they miss
cases, where operations are need to be composed, i.e. where
one operation enables another operation. In contrast, the
synthesis-based methods are more robust, as they work on
the semantics of a program, resulting in significantly higher
success rates.
Tenspiler, a verified lifting based method, successfully

lifts 63% of benchmarks, but it misses significant ones. In
particular, it fails on tensor contractions, as found in dsp-
stone and polybench, for which it does not have appropriate
hand-coded heuristics. These are needed to reduce its expo-
nentially growing search space to a tractable size.
MlirSynth, a method based on bottom-up enumerative

synthesis, is able to lift 76% of benchmarks. However, it

0

25

50

75

100

1 10 100 1 000 3 600
Synthesis time in s (log)

Su
cc

es
s

ra
te

 in
 % Method

Tensorize

MlirSynth

Tenspiler

MultiLevelTactics

Figure 9. Number of successfully lifted benchmarks over a
1 hour time frame.

struggles to scale to the more complex benchmarks found in
blend and polybench, as we show in the next section.

Tensorize achieves the highest success rate, lifting 96% of
benchmarks. It misses dissolve_blend_8 and gesummv be-
cause the algorithm looses time in backtracking. If the time-
out was increased slightly, it would successfully lift those,
increasing the success rate to 98% It fails on two other bench-
marks transformer_part_1 and transformer_part_2 be-
cause of currently unsupported program structures.

Increasing Timeout. To explore the methods further im-
provement potentials, we increase the 60 second synthesis

23

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, and M. F. P. O’Boyle

Table 2. Statistics of Tensorize’s synthesis process, summarized for each benchmark suite. Exploration steps refers to number
of symSketch function calls in Algorithm 3.

Exploration Exploration Sketches Sketches Synthesis
Steps Backtracks Pattern Matched Algeb. Solved Time (s)

Suite Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg

blas 1 3 2.0 0 0 0.0 1 4 3.0 0 25 13.0 0.02 2.08 1.28
blend 1 6 2.8 0 73 6.1 1 20 6.9 0 4239 511.7 0.0 112.2 19.7
darknet 1 3 1.4 0 1 0.1 1 4 1.6 0 192 40.9 0.01 8.88 2.01
dsp 1 1 1.0 0 0 0.0 1 1 1.0 0 0 0.0 0.00 0.07 0.02
dspstone 1 1 1.0 0 0 0.0 1 1 1.0 0 0 0.0 0.03 0.13 0.08
llama 1 5 1.9 0 0 0.0 1 8 2.5 0 82 16.8 0.01 4.68 1.29
makespeare 1 1 1.0 0 0 0.0 1 1 1.0 0 0 0.0 0.02 0.02 0.02
mathfu 1 3 1.2 0 0 0.0 1 4 1.3 0 162 14.7 0.01 2.99 0.28
polybench 1 287 26.9 0 96 8.4 1 38 6.9 0 5094 525.0 0.02 220.78 29.13
simpl_array 1 2 1.4 0 0 0.0 1 4 2.2 0 14 5.4 0.02 3.96 1.59
utdsp 1 1 1.0 0 0 0.0 1 1 1.0 0 0 0.0 0.00 0.09 0.04

timeout to 60 minutes and show the success rates in Fig-
ure 9. Very few additional benchmarks are lifted by the other
methods, never approaching Tensorize’s success rate.

8.3 Scalability Analysis of Synthesizers
To evaluate the scalability of the different synthesizers, we
analyze their synthesis times based on the complexity of the
source and target programs as shown in Figure 10.

Loop Depth. Themaximum loop depth of the source input
program is a key complexity factor for programs contain-
ing tensor contractions which operate on multi-dimensional
tensors. As seen in Figure 10, Tenspiler is unable to scalably
synthesize when input programs contain loop nests greater
than 2, a significant limitation. Hand-crafted heuristics begin
to fail when source programs become more complex. In con-
trast, MlirSynth and Tensorize scale well with loop depth
of the source program.

Tensor Program Length. The length of a Tensor pro-
gram, defined as the number of operations, is a critical target
program metric, as longer programs are potentially more
profitable to lift. The plot shows that MlirSynth and Ten-
spiler are able to scale to DSL programs up to lengths 4 and
5 respectively, with decreasing success rates as complexity
increases. MlirSynth’s bottom-up enumeration scales expo-
nentially with target program length, which is reflected 0 in
the experimental data. Tensorize scales well even on long
programs, which is enabled by its incremental divide-and-
conquer style synthesis technique.

Overall and in contrast to othermethods,Tensorize scales
with source and target complexity making it the overall most
scalable lifting method.

Max Loop Depth (Source)

Program Length (Tensor DSL)

1 2 3 4

2.5 5.0 7.5 10.0 12.5
0

25

50

75

100

0

25

50

75

100

Su
cc

es
s

ra
te

 in
 % Method

Tensorize

MlirSynth

Tenspiler

MultiLevelTactics

Figure 10. Scalability of Tensorize, Tenspiler, and
MlirSynth in different complexity metrics with smoothed
trend lines fitted to the data points.

8.4 Tensorize Synthesis Algorithm
Table 2 shows statistics of Tensorize’s synthesis algorithm.
The algorithm works optimally for 96 out of 99 benchmarks,
directly leading to the solution without requiring backtrack-
ing. In the remaining 3 benchmarks, it initially explored a
local optimum before successfully finding the global one.
This leads to synthesis times that are in practice linear with
the program length. Most simplification is done through the
algebraic symbolic solver, especially in the cases of more
complex benchmarks. Only a minority of simplification is
done by pattern matching. An exception are the benchmarks

24

Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching ... CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

2.
5

27
.6

5.
7

55
55

.5
90

.1
30

.1
2.

3
2.

3
2.

3
2.

3
2.

1
2.

2 2.
7

2.
1

2.
0

2.
1 2.
4

2.
0

53
13

.3
48

41
.4

59
35

.3
21

63
.9

48
37

.2
57

58
.6

98
40

.3
66

30
.2

23
79

.3
28

40
.4

49
64

.5
42

77
.9

76
.5 16

1.
2

70
.8

19
8.

3
4.

8
3.

2 4.
7

1.
2

1.
2

1.
2

1.
2

6.
2

4.
8

1.
2

97
18

1.
9

14
42

90
.9

39
62

3.
7

16
99

93
.3

46
99

.7
61

.9
37

25
.3

28
46

.6
25

72
.7

21
77

.4
89

7.
3

26
.2

42
97

.4
94

4.
3

1.
2

0.
4

19
4.

6
1.

2
1.

2
1.

2
1.

0
1.

1
1.

2
1.

2
1.

2 2.
0

1.
1

1.
2

1.
2

64
10

.4
21

73
.5

52
59

17
.3

31
49

.7
34

89
.4

30
18

.6
28

49
.7

10
45

.1
21

02
.9

96
4.

1
86

1.
4

11
86

.7
90

6.
6

18
68

.6
16

46
.1

15
.4

12
5.

2
16

2.
5

1.
2

1.
1

26
.6

12
91

2.
3

24
07

8.
3

20
23

.8
92

7.
9

38
.2

4.
6

2.
4 3.
2 5.

2
4.

5
2.

0 5.
2

3.
2

70
.9

26
37

.5
35

65
.8

25
53

.0 27
11

6.
5

34
80

.8
14

97
.4 19

28
1.

4
17

20
1.

5
1.

4 2.
0 4.

8
4.

8 6.
7

2.
7

1.
2

1.
2

1.
2

1.
2

1.
2

1.
2

37
67

.6
16

42
.4

42
80

.2
69

59
.3

9.
2

83
.8

18
45

.1
11

25
.0

10
28

.3
15

99
.1

14
89

.9
66

3.
5

4.
7

34
20

.5
21

5.
4

29
9.

7
18

.8
20

.4
41

6.
1

50
0.

6
68

.8 86
.3

1.
8 4.

4
11

.7
16

4.
9

18
2.

9
68

.0
17

9.
6

21
82

20
.7

57
05

56
.9

10
2.

2
10

7.
5

43
18

62
.0

41
59

70
.9

15
11

89
.8

78
14

8.
8

55
3.

5
84

.5 64
4.

2
14

92
16

.0
18

53
19

.6
59

93
7.

8
17

92
39

.9
1.

2
4.

7
1.

2
1.

2
4.

8

59
3.

2 29
31

.9
81

5.
9

76
7.

7
17

80
.4

12
9.

9
2.

5
0.

9 2.
4

1.
2

13
0.

2

42
05

8.
2

47
96

.9
47

8.
3 35

09
.0

97
3.

8
21

03
8.

7

blas blend darknet dsp dspst. llama mathfu mk * mk polybench s.array utdsp

AM
D

 R
yzen 9 7950X

N
VID

IA G
TX 1080Ti

do
t

ge
m

v
ge

r
co

lo
r_

bu
rn

8
co

lo
r_

do
dg

e8
da

rk
en

_b
le

nd
8

di
ss

ol
ve

_b
le

nd
8

lig
ht

en
_b

le
nd

8
lin

ea
r_

bu
rn

8
lin

ea
r_

do
dg

e8
m

ul
tip

ly
_b

le
nd

8
no

rm
al

_b
le

nd
8

no
rm

al
_b

le
nd

8f
ov

er
la

y_
bl

en
d8

sc
re

en
_b

le
nd

8
ge

m
m

_n
n

ge
m

m
_n

t
ge

m
m

_t
n

ge
m

m
_t

t
m

ag
_a

rra
y

m
at

rix
_a

dd
_m

at
rix

m
se

_a
rra

y
m

ul
t_

ad
d_

in
to

_c
pu

ol
_l

2_
cp

u1
ol

_l
2_

cp
u2

sc
al

e_
ar

ra
y

sc
al

e_
m

at
rix

su
m

_a
rra

y
tra

ns
la

te
_a

rra
y

m
at

ad
d

m
at

in
it

m
at

m
ul

m
at

sc
al

m
at

su
b

va
dd

vc
op

y
vf

ill
vm

ul
vn

eg
vo

ffs
et

vr
ec

ip
vs

ca
l

vs
ub

w
ve

c
m

at
1x

3
m

at
rix

1
m

at
rix

2
n_

re
al

_u
pd

at
es

pi
n_

do
w

n
m

at
m

ul
_l

l
rm

sn
or

m
_p

ar
t1

rm
sn

or
m

_p
ar

t2
so

ftm
ax

_p
ar

t1
so

ftm
ax

_p
ar

t2
so

ftm
ax

_p
ar

t3
so

ftm
ax

_p
ar

t4
tra

ns
fo

rm
er

_p
ar

t3
tra

ns
fo

rm
er

_p
ar

t4
di

ve
q

di
ve

q_
sc

a
le

n
le

n_
sq le
rp

m
at

m
ul

_s
ca

m
ul

eq
m

ul
eq

_s
ca

ne
ga

te
pl

us
eq

su
be

q
su

be
q_

sc
a

su
m

_o
f_

sq
ua

re
s

2m
m

3m
m

at
ax

bi
cg

co
rre

la
tio

n
co

va
ria

nc
e

do
itg

en
ge

m
m

ge
m

ve
r

ge
su

m
m

v
m

vt
sy

m
m

sy
r2

k
sy

rk
trm

m
ar

ra
y_

in
c

ar
ra

y_
su

m
cu

be
_i

n_
pl

ac
e

fo
ur

th
_i

n_
pl

ac
e

su
m

_e
lts dc

t
fir

_s
m

al
l

hi
st

og
ra

m
lm

sf
ir1

lm
sf

ir2
m

ul
t_

bi
g

11

10

100

1 000

11
10

100
1 000

10 000
100 000

1 000 000
10 000 000

Benchmark

Sp
ee

du
p

ov
er

 L
LV

M
−O

3
(lo

g)

Tensorize Backend NumPy JAX PyTorch PyTorch (Compiled)

* = makespeare

Figure 11. Detailed speedups of fastest Tensorize backend over LLVM-O3 on different compute devices.

suites dsp, dspstone and utdsp that contain simple bench-
marks, that can are pattern matched in only one exploration
step, resulting in synthesis times of under one second.

8.5 Impact of Different Backends
One of the main benefits of lifting legacy code, is that it
allows the use of a wide range of Tensor compilers that are
optimized for target hardware.
Figure 11 shows the speedups achieved by the best per-

forming Tensor DSL backend for each benchmark on the
AMD / NVIDIA platform. The detailed results show that
lifting is profitable in 97 out of the 99 benchmarks, with the
only exceptions being computationally very simple bench-
marks. For benchmarks that contain reductions and tensor
contractions, the NumPy and JAX backends give the high-
est speedups. This is because these backends map to pre-
optimized kernel libraries. JAX is further able to optimize
across operations, e.g. by fusion, enhancing performance
further in several cases. PyTorch Compiled performs best in
benchmarks that are less computationally demanding and
involve writing results back to externally allocated mem-
ory (pass-by-reference), which JAX lacks because its tensors
are immutable. The bottom of Figure 11 shows the GPU
speedups achieved relative to a LLVM-O3 CPU baseline on
the AMD platform, whereas only the computation, not the
memory transfer is timed. The results demonstrate substan-
tial speedups in the majority of benchmarks when executed
on GPU. The evaluated JAX’s and PyTorch’s GPU backends

use highly parallel execution and pre-optimized kernel li-
braries, which are very profitable to use, especially for com-
putationally intensive tasks such as tensor contractions.

9 Related Work
Program Synthesis. Program synthesis is the task of syn-

thesizing programs that satisfy a given specification. A com-
mon way of tackling this is enumerative search, guided by
syntactic templates [7, 14, 25, 40, 53].
A popular way of reducing the search space is to use

sketches provided by the user, guessing complete programs
and checking them against the specification [52]. Our ap-
proach generates sketches, automatically checks iteratively
whether partial programs might be correct, and never has to
check a complete program against the full specification.
Dillig et al use a symbolic solver to check whether there

exists a completion to a partial program that would sat-
isfy the specification, and use that information to guide the
search [22, 24]. CEGIS-T [2] synthesizes program sketches
and then uses a symbolic solver to fill holes in the sketch,
but these holes are limited to constants, and so, unlike our
technique, sketches cannot be nested. DeepCoder [13] uses a
neural network to predict program sketches, which are then
filled in with enumerative synthesis, but their approach, in
contrast to our symbolic reasoning, requires a significant
amount of training data.

Enumerative Synthesis in the Tensor Domain. Syn-
thesizing tensor programs is considerably more challenging
than the list or string processing problems classically studied

25

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, and M. F. P. O’Boyle

in program synthesis. Recent work has explored bottom-up
synthesis which finds programs that are equivalent on con-
crete input/output (IO) examples using enumerative search.
TF-Coder [48] raises IO examples to the TensorFlow DSL,
ranking candidates with neural networks. MlirSynth [20]
raises programs from lower-level MLIR dialects to higher-
level ones, using an algorithm similar to TF-Coder and heuris-
tics derived from static program analysis. C2TACO [36] sim-
ilarly raises programs from C to the TACO DSL [32]. In
contrast, Tensorize synthesizes a symbolically equivalent
program in the tensor language. This equivalence holds for
all possible inputs, not just specific examples, providing a
robust and sound approach to program synthesis.

Verified Lifting. The use of program synthesis to derive
programs from a specification has widely been explored be-
fore [23, 49]. The approach of using a low-level program as
the specification and targeting a high-level DSL was real-
ized by Helium, a tool transforming loop implementations
of stencils into the Halide DSL [37, 44]. This concept was
further applied to different domains, e.g. Casper, which lifts
sequential Java implementations to MapReduce paradigms
that can be efficiently executed using Hadoop [4, 5].
This approach has been applied to the tensor domain

where Tenspiler [43], synthesizes a loop invariant and trans-
lates it to a Tensor DSL program. To mitigate exponentially
scaling synthesis times, Tenspiler uses strong heuristics that
limit its generalization. In contrast, our approach scales over
complex programs by solving the synthesis problem through
incremental simplifications.

Compiler Optimization with E-graphs. E-graphs have
proved effective in representing large rewrite spaces effi-
ciently. Even so the size and number of terms grows expo-
nentially with program depth [54, 57].
Tensorize achieves scalability by using a symbolically

guided search. Further, e-graphs require the source and tar-
get to be in the same language, and our problem necessarily
requires them to be in different languages, so to use e-graphs
we would need to translate both into a common representa-
tion. Additionally, in contrast to e-graphs, Tensorize does
not need a fixed set of user-provided rewrite rules, as it relies
on symbolic equivalences.

Compiler Optimization for Tensor Programs. Polyhe-
dral analysis has been widely applied to optimize tensor pro-
grams, targeting data access locality for more efficient use of
cache hierarchies, and targeting for parallelism [17, 26]. This
has also been applied to GPU code generation [12, 55, 56].
A recent work, Polygeist enables polyhedral optimizations
for C code through the MLIR compiler [35], making them
available to further use cases.

While polyhedral optimizations enable schedule optimiza-
tions on the loop statement level, Tensorize enables a larger
class of optimizations by raising to high-level DSLs, such as

high-level algebraic rewriting, fusion, and usage of vendor-
optimized kernel implementations.

10 Conclusion
This paper presented Tensorize, a program synthesizer that
automatically lifts C and Python code into equivalent Tensor
DSL counterparts, using a novel program synthesis method
based on symbolic traces, sketches and simplification.
We show that Tensorize’s symbolic synthesis method

scales well, in practice linearly for most benchmarks, with
the complexity of synthesized programs, outperforming all
previous techniques.

Future work will investigate data-dependent control-flow
and explore the use of machine learning for sketch genera-
tion and selection in order to further reduce synthesis time.

Data-Availability Statement
The source code, benchmarks, evaluation, and automated
scripting are publicly available on Zenodo, allowing experi-
mentation and reproducibility [19].

A Artifact Appendix
A.1 Abstract
This artifact contains the source code of Tensorize, evalua-
tion benchmarks, and the scripts used to generate the plots
shown in Figures 7-10. We provide an automated pipeline to
build Tensorize, run synthesis experiments, and plot results.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: A sketch-based program synthesis for lifting
code to Tensor DSLs.
• Compilation: Docker is used to build and run the artifact.
In our tests, we used Docker version 26.1.3.
• Data set: Benchmarks from related work and open-source
software repositories are used: PolyBench, blas, blend, dark-
net, dsp, dspstone, llama, mathfu, makespeare, simple_array,
utdsp.
• Run-time environment: Ubuntu 22.04 as OS.
• Hardware: Modern Multi-core CPU (In our experiments,
an AMD 7950X with 32 threads) and at least 32 GB memory.
• Metrics: Synthesis time, Speedup over baseline.
• Output: Synthesized program files, CSV for metrics, PDF
for plots.
• How much disk space required (approximately)?: 30
GB.
• How much time is needed to prepare workflow (ap-
proximately)?: 5 minutes.
• Howmuch time is needed to complete experiments (ap-
proximately)?: approx. 2 hours on a CPU with 32 threads.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT License.
• Data licenses (if publicly available)?: Please refer to
licenses of individual benchmark suites.
• Development repository: https://github.com/alexanderb14/

tensorize

26

https://github.com/alexanderb14/tensorize
https://github.com/alexanderb14/tensorize

Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching ... CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

14095398

A.3 Description
A.3.1 How Delivered. The artifact is provided as a zip archive
on Zenodo for persistent storage and versioning. A Docker-based
setup allows straightforward installation and execution, which is
described in A.4 and A.5.

A.3.2 Hardware Dependencies. Experiments were conducted
on an AMD 7950X multi-core CPU (32 threads), 64 GB @ 6000
MT/s memory. Similar hardware is recommended to obtain results
similar to the plots.

A.3.3 Software Dependencies. Docker is the only required soft-
ware on the host system. Tensorize mainly builds on MLIR, JAX,
and SymPy, which are automatically installed. For a non-Docker
setup, which is useful for development purposes, use the follow-
ing commands to first build the dependencies and then build the
Tensorize project.

./ build_tools/build_dependencies.sh

./ build_tools/build.sh

A.3.4 Data Sets. Benchmarks are stored as MLIR files in the
benchmark directory, categorized by benchmark suite.

A.4 Installation
Download the file from Zenodo using a web browser, then unzip it.

A.5 Experiment Workflow
a) Fully Automated. The following command automatically

sets up the docker environment, runs the synthesis experiments,
and plots the results. Plots and synthesized programs are stored in
the out directory.

./ run_all.sh

b) Manual. Alternatively, for a step-by-step setup, start with
building the docker image:

docker build -t tensorize -artifact -f Dockerfile .

Then, create and mount an out directory on the host, and start an
interactive terminal session. We recommend creating and mounting
the out directory on the host OS, so it can access and open the
plots using host system software.

mkdir out

docker run -v $(pwd)/out:/root/out \

-it tensorize -artifact

Inside the container, start the synthesis experiments with:

python benchmark/run.py

Finally, results can be plotted with the below command, which
will produce PDF files in the out directory.

Rscript benchmark/plot.R

A.6 Evaluation and Expected Result
The resulting plots in the out directory should match Figures 7-10,
assuming experiments are run on hardware similar to ours.
ls out

figure_7.pdf figure_8.pdf figure_9.pdf

figure_10.pdf stats.csv synth

A.7 Reusability and Experiment Customization
Tensorize is reusable in various aspects. Users can synthesize
custom programs beyond the evaluated benchmarks, target alter-
native domain-specific languages (DSLs) other than the evaluated
NumPy DSL, and integrate Tensorize as a component within their
MLIR-based compilation flows.

The entry point for running Tensorize individually, outside of
the evaluation flow, is the script tensorize/main.py. This script
provides several configuration options for users to adapt the syn-
thesizer to their needs. Below is an excerpt, summarizing the main
options:
python tensorize/main.py --help

--program Specifies the MLIR file of the source

program to synthesize.

--synth_out Specifies the output file for the

synthesized program.

--target Defines the target DSL.

(default: numpy)

...

The following shows two example use cases for customization,
along with corresponding Tensorize invocations.

Synthesizing Custom Programs. To synthesize custom pro-
grams outside the evaluated benchmarks, invoke Tensorize di-
rectly with the desired source program. Source files can originate
from other MLIR-based tools or be modified versions of the bench-
marks available in the benchmark directory.

Assuming the source file is original.mlir, the command below
synthesizes an equivalent NumPy DSL program, which is then
saved as synth.py.
python tensorize/main.py --program original.mlir

--synth_out synth.py

Synthesizing Programs in a Different Target DSL. To target
a DSL other than NumPy, use the –target parameter. Besides the
evaluated NumPy, we also tested theMLIRHLO dialect, which is the
input language for XLA, the backend compiler used in TensorFlow
and JAX. HLO integrates seamlessly with the MLIR compiler infras-
tructure, making it a good fit for building end-to-end MLIR-based
compilation flows.

For example, synthesizing the file original.mlir into the MLIR
HLO dialect and saving the synthesized program as synth.mlir
can be achieved with the following command.
python tensorize/main.py --program original.mlir

--synth_out synth.mlir

--target hlo

27

https://doi.org/10.5281/zenodo.14095398
https://doi.org/10.5281/zenodo.14095398

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, and M. F. P. O’Boyle

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasude-
van, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: a system for large-scale machine learning. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA,
265–283. https://www.tensorflow.org/

[2] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and
Elizabeth Polgreen. 2018. Counterexample Guided Inductive Synthesis
Modulo Theories. In Computer Aided Verification, Hana Chockler and
Georg Weissenbacher (Eds.). Springer International Publishing, Cham,
270–288. https://doi.org/10.1007/978-3-319-96145-3_15

[3] Miguel Á. Abella-González, Pedro Carollo-Fernández, Louis-Noël
Pouchet, Fabrice Rastello, and Gabriel Rodríguez. 2021. Poly-
Bench/Python. https://doi.org/10.5281/zenodo.4471345

[4] Maaz Bin Safeer Ahmad and Alvin Cheung. 2017. Optimizing Data-
Intensive Applications Automatically By Leveraging Parallel Data Pro-
cessing Frameworks. In Proceedings of the 2017 ACM International Con-
ference on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17).
Association for ComputingMachinery, New York, NY, USA, 1675–1678.
https://doi.org/10.1145/3035918.3056440

[5] Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically
Leveraging MapReduce Frameworks for Data-Intensive Applications.
In Proceedings of the 2018 International Conference on Management of
Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing
Machinery, New York, NY, USA, 1205–1220. https://doi.org/10.1145/

3183713.3196891

[6] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and
Shoaib Kamil. 2019. Automatically translating image processing li-
braries to halide. ACM Trans. Graph. 38, 6, Article 204 (Nov. 2019),
13 pages. https://doi.org/10.1145/3355089.3356549

[7] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recur-
sive Program Synthesis. InComputer Aided Verification. Springer Berlin
Heidelberg, 934–950. https://doi.org/10.1007/978-3-642-39799-8_67

[8] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. In 2013 Formal Methods in Computer-Aided Design.
1–8. https://doi.org/10.1109/FMCAD.2013.6679385

[9] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh
Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni
Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban
Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong,
Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalam-
barkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang,
Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian
Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen
Suk, Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang,
Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, William
Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. 2024. Py-
Torch 2: Faster Machine Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation. In Proceedings of the 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (La Jolla, CA, USA)
(ASPLOS ’24). Association for Computing Machinery, New York, NY,
USA, 929–947. https://doi.org/10.1145/3620665.3640366

[10] Llama Cpp Python Authors. 2023. llama-cpp-python. https://github.

com/abetlen/llama-cpp-python

[11] Mathfu Authors. 2015. Mathfu. https://github.com/google/mathfu

[12] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del
Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib

Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhedral Com-
piler for Expressing Fast and Portable Code. In 2019 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO).
193–205. https://doi.org/10.1109/CGO.2019.8661197

[13] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write
Programs. In ICLR (Poster). OpenReview.net. https://openreview.net/

pdf?id=ByldLrqlx

[14] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-time
learning for bottom-up enumerative synthesis. Proc. ACM Program.
Lang. 4, OOPSLA, Article 227 (Nov. 2020), 29 pages. https://doi.org/

10.1145/3428295

[15] Sahil Bhatia, Sumer Kohli, Sanjit A. Seshia, and Alvin Cheung. 2023.
Building Code Transpilers for Domain-Specific Languages Using Pro-
gram Synthesis. In 37th European Conference on Object-Oriented Pro-
gramming (ECOOP 2023) (Leibniz International Proceedings in Informat-
ics (LIPIcs), Vol. 263), Karim Ali and Guido Salvaneschi (Eds.). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 38:1–
38:30. https://doi.org/10.4230/LIPIcs.ECOOP.2023.38

[16] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington,
R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Ham-
marling, Greg Henry, et al. 2002. An updated set of basic linear algebra
subprograms (BLAS). ACM Trans. Math. Software 28, 2 (2002), 135–151.

[17] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. 2008. A practical automatic polyhedral parallelizer and locality
optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Tucson, AZ, USA)
(PLDI ’08). Association for Computing Machinery, New York, NY, USA,
101–113. https://doi.org/10.1145/1375581.1375595

[18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX:
composable transformations of Python+NumPy programs. http://github.
com/google/jax

[19] Alexander Brauckmann. 2024. Tensorize: Fast Synthesis of Tensor
Programs from Legacy Code using Symbolic Tracing, Sketching and
Solving (Artifact). https://doi.org/10.5281/zenodo.14095398

[20] Alexander Brauckmann, Elizabeth Polgreen, Tobias Grosser, and
Michael F. P. O’Boyle. 2023. mlirSynth: Automatic, Retargetable Pro-
gram Raising in Multi-Level IR Using Program Synthesis. In 2023 32nd
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT). 39–50. https://doi.org/10.1109/PACT58117.2023.00012

[21] Lorenzo Chelini, Andi Drebes, Oleksandr Zinenko, Albert Cohen, Nico-
las Vasilache, Tobias Grosser, and Henk Corporaal. 2021. Progres-
sive Raising in Multi-level IR. In 2021 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO). 15–26. https:

//doi.org/10.1109/CGO51591.2021.9370332

[22] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng.
2020. Program Synthesis Using Deduction-Guided Reinforcement
Learning. In Computer Aided Verification: 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part II
(Los Angeles, CA, USA). Springer-Verlag, Berlin, Heidelberg, 587–610.
https://doi.org/10.1007/978-3-030-53291-8_30

[23] Grigory Fedyukovich, Maaz Bin Safeer Ahmad, and Rastislav Bodik.
2017. Gradual synthesis for static parallelization of single-pass array-
processing programs. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (Barcelona,
Spain) (PLDI 2017). Association for Computing Machinery, New York,
NY, USA, 572–585. https://doi.org/10.1145/3062341.3062382

[24] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Pro-
gram synthesis using conflict-driven learning. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Philadelphia, PA, USA) (PLDI 2018). Associa-
tion for Computing Machinery, New York, NY, USA, 420–435. https:

28

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.5281/zenodo.4471345
https://doi.org/10.1145/3035918.3056440
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1145/3620665.3640366
https://github.com/abetlen/llama-cpp-python
https://github.com/abetlen/llama-cpp-python
https://github.com/google/mathfu
https://doi.org/10.1109/CGO.2019.8661197
https://openreview.net/pdf?id=ByldLrqlx
https://openreview.net/pdf?id=ByldLrqlx
https://doi.org/10.1145/3428295
https://doi.org/10.1145/3428295
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://doi.org/10.1145/1375581.1375595
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.5281/zenodo.14095398
https://doi.org/10.1109/PACT58117.2023.00012
https://doi.org/10.1109/CGO51591.2021.9370332
https://doi.org/10.1109/CGO51591.2021.9370332
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1145/3062341.3062382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382

Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching ... CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

//doi.org/10.1145/3192366.3192382

[25] JohnK. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data
structure transformations from input-output examples. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Portland, OR, USA) (PLDI ’15). Association for
Computing Machinery, New York, NY, USA, 229–239. https://doi.org/

10.1145/2737924.2737977

[26] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
Armin Größlinger, and Louis-Noël Pouchet. 2011. Polly-Polyhedral op-
timization in LLVM. In Proceedings of the First International Workshop
on Polyhedral Compilation Techniques (IMPACT), Vol. 2011. 1.

[27] Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Col-
lobert. 2023. MLX: Efficient and flexible machine learning on Apple
silicon. https://github.com/ml-explore

[28] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Ar-
ray programming with NumPy. Nature 585, 7825 (2020), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

[29] Texas Instrument. 2015. Texas Instrument Digital Signal Processing
(DSP) Library for MSP430 Microcontrollers. https://www.ti.com/tool/

MSP-DSPLIB

[30] Alexander Kalistratov Ivan Butygin, Diptorup Deb. 2023. numba-mlir:
MLIR-based numba backend. https://github.com/numba/numba-mlir

[31] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-
Lezama. 2016. Verified lifting of stencil computations. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association
for Computing Machinery, New York, NY, USA, 711–726. https://doi.

org/10.1145/2908080.2908117

[32] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and
Saman Amarasinghe. 2017. Taco: A tool to generate tensor algebra
kernels. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). 943–948. https://doi.org/10.1109/ASE.2017.
8115709

[33] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: a
LLVM-based Python JIT compiler. In Proceedings of the Second Work-
shop on the LLVMCompiler Infrastructure in HPC (Austin, Texas) (LLVM
’15). Association for Computing Machinery, New York, NY, USA, Arti-
cle 7, 6 pages. https://doi.org/10.1145/2833157.2833162

[34] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for
lifelong program analysis & transformation. In International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004. 75–86.
https://doi.org/10.1109/CGO.2004.1281665

[35] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastructure
for the End of Moore’s Law. https://doi.org/10.48550/arXiv.2002.11054

arXiv:2002.11054 [cs]
[36] José Wesley de Souza Magalhães, Jackson Woodruff, Elizabeth Pol-

green, and Michael F. P. O’Boyle. 2023. C2TACO: Lifting Tensor
Code to TACO. In Proceedings of the 22nd ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Expe-
riences (GPCE 2023). Association for Computing Machinery, 42–56.
https://doi.org/10.1145/3624007.3624053

[37] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan
Ragan-Kelley, Sylvain Paris, Qin Zhao, and Saman Amarasinghe. 2015.
Helium: lifting high-performance stencil kernels from stripped x86
binaries to halide DSL code. SIGPLAN Not. 50, 6 (jun 2015), 391–402.
https://doi.org/10.1145/2813885.2737974

[38] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík,
Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov,
Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E.
Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Ku-
lal, Robert Cimrman, and Anthony Scopatz. 2017. SymPy: sym-
bolic computing in Python. PeerJ Computer Science 3 (2017), e103.
https://doi.org/10.7717/peerj-cs.103

[39] William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zi-
nenko. 2021. Polygeist: Raising C to Polyhedral MLIR. In 2021 30th
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT). 45–59. https://doi.org/10.1109/PACT52795.2021.00011

[40] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-
directed program synthesis. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Port-
land, OR, USA) (PLDI ’15). Association for Computing Machinery, New
York, NY, USA, 619–630. https://doi.org/10.1145/2737924.2738007

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
an imperative style, high-performance deep learning library. Curran
Associates Inc., Red Hook, NY, USA. https://dl.acm.org/doi/10.5555/

3454287.3455008

[42] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral bench-
mark suite. (2012). https://www.cs.colostate.edu/~pouchet/software/

polybench

[43] Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A. Seshia,
and Alvin Cheung. 2024. Tenspiler: A Verified-Lifting-Based Compiler
for Tensor Operations. In 38th European Conference on Object-Oriented
Programming (ECOOP 2024) (Leibniz International Proceedings in In-
formatics (LIPIcs), Vol. 313), Jonathan Aldrich and Guido Salvaneschi
(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 32:1–32:28. https://doi.org/10.4230/LIPIcs.ECOOP.2024.32

[44] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: a lan-
guage and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (Seattle, Washington, USA) (PLDI ’13). Association
for Computing Machinery, New York, NY, USA, 519–530. https:

//doi.org/10.1145/2491956.2462176

[45] Joseph Chet Redmon. 2014. Darknet. https://github.com/pjreddie/

darknet

[46] Christopher D. Rosin. 2019. Stepping stones to inductive synthesis of
low-level looping programs. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence and Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference and Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence (Honolulu, Hawaii,
USA) (AAAI’19/IAAI’19/EAAI’19). AAAI Press, Article 292, 9 pages.
https://doi.org/10.1609/aaai.v33i01.33012362

[47] Mazen AR Saghir. 1998. Application-specific instruction-set architectures
for embedded DSP applications. Citeseer.

[48] Kensen Shi, David Bieber, and Rishabh Singh. 2022. TF-Coder: Pro-
gram Synthesis for Tensor Manipulations. ACM Transactions on
Programming Languages and Systems (TOPLAS) 44, 2 (2022), 1–36.
https://doi.org/10.1145/3517034

[49] Rohit Singh, Rishabh Singh, Zhilei Xu, Rebecca Krosnick, andArmando
Solar-Lezama. 2014. Modular Synthesis of Sketches Using Models. In
Verification, Model Checking, and Abstract Interpretation - 15th Interna-
tional Conference, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014,
Proceedings. 395–414. https://doi.org/10.1007/978-3-642-54013-4_22

29

https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
https://github.com/ml-explore
https://doi.org/10.1038/s41586-020-2649-2
https://www.ti.com/tool/MSP-DSPLIB
https://www.ti.com/tool/MSP-DSPLIB
https://github.com/numba/numba-mlir
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1109/ASE.2017.8115709
https://doi.org/10.1109/ASE.2017.8115709
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.48550/arXiv.2002.11054
https://arxiv.org/abs/2002.11054
https://doi.org/10.1145/3624007.3624053
https://doi.org/10.1145/2813885.2737974
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1109/PACT52795.2021.00011
https://doi.org/10.1145/2737924.2738007
https://dl.acm.org/doi/10.5555/3454287.3455008
https://dl.acm.org/doi/10.5555/3454287.3455008
https://www.cs.colostate.edu/~pouchet/software/polybench
https://www.cs.colostate.edu/~pouchet/software/polybench
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://doi.org/10.1609/aaai.v33i01.33012362
https://doi.org/10.1145/3517034
https://doi.org/10.1007/978-3-642-54013-4_22

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, and M. F. P. O’Boyle

[50] Sunbeom So and Hakjoo Oh. 2017. Synthesizing Imperative Pro-
grams from Examples Guided by Static Analysis. In Static Analysis,
Francesco Ranzato (Ed.). Springer International Publishing, Cham,
364–381. https://doi.org/10.1007/978-3-319-66706-5_18

[51] Armando Solar-Lezama. 2009. The Sketching Approach to Program
Synthesis. In Programming Languages and Systems, Zhenjiang Hu
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 4–13. https:

//doi.org/10.1007/978-3-642-10672-9_3

[52] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. 2006. Combinatorial sketching for finite programs.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose,
California, USA) (ASPLOS XII). Association for Computing Machinery,
New York, NY, USA, 404–415. https://doi.org/10.1145/1168857.1168907

[53] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela
Mador-Haim, Milo M.K. Martin, and Rajeev Alur. 2013. TRAN-
SIT: specifying protocols with concolic snippets. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (Seattle, Washington, USA) (PLDI ’13). As-
sociation for Computing Machinery, New York, NY, USA, 287–296.
https://doi.org/10.1145/2491956.2462174

[54] Jonathan Van Der Cruysse and Christophe Dubach. 2024. Latent
Idiom Recognition for a Minimalist Functional Array Language Using
Equality Saturation. In 2024 IEEE/ACM International Symposium on

Code Generation and Optimization (CGO). 270–282. https://doi.org/10.

1109/CGO57630.2024.10444879

[55] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary Devito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2019. The Next 700 Accelerated Layers:
From Mathematical Expressions of Network Computation Graphs to
Accelerated GPU Kernels, Automatically. ACM Trans. Archit. Code
Optim. 16, 4, Article 38 (Oct. 2019), 26 pages. https://doi.org/10.1145/

3355606

[56] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-
cio Gómez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral
parallel code generation for CUDA. ACM Trans. Archit. Code Optim.
9, 4, Article 54 (Jan. 2013), 23 pages. https://doi.org/10.1145/2400682.

2400713

[57] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey,
Sudip Roy, and Jacques Pienaar. 2021. Equality Saturation for
Tensor Graph Superoptimization. In Proceedings of Machine Learn-
ing and Systems, A. Smola, A. Dimakis, and I. Stoica (Eds.), Vol. 3.
255–268. https://proceedings.mlsys.org/paper_files/paper/2021/file/

cc427d934a7f6c0663e5923f49eba531-Paper.pdf

[58] Vojin Zivojnovic. 1994. DSPstone: A DSP-oriented benchmarking
methodology. Proc. Signal Processing Applications & Technology, Dallas,
TX, 1994 (1994), 715–720.

Received 2024-09-12; accepted 2024-11-04

30

https://doi.org/10.1007/978-3-319-66706-5_18
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/2491956.2462174
https://doi.org/10.1109/CGO57630.2024.10444879
https://doi.org/10.1109/CGO57630.2024.10444879
https://doi.org/10.1145/3355606
https://doi.org/10.1145/3355606
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://proceedings.mlsys.org/paper_files/paper/2021/file/cc427d934a7f6c0663e5923f49eba531-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/cc427d934a7f6c0663e5923f49eba531-Paper.pdf

	Abstract
	1 Introduction
	1.1 Existing Schemes
	1.2 Our Approach
	1.3 Contributions

	2 Motivating Example
	2.1 Tensorize: Lifting for Performance

	3 Overview
	4 Symbolic Program Capturing
	5 Symbolic Sketch Generation
	5.1 Target Grammar
	5.2 Sketch Generation

	6 Synthesis by Symbolic Simplification
	6.1 Synthesis Algorithm
	6.2 Symbolic Solving
	6.3 Correctness Guarantees

	7 Experimental Setup
	7.1 Benchmarks
	7.2 Lifting Methods
	7.3 Tensor DSL Compilers
	7.4 Methodology
	7.5 Systems and Software Libraries

	8 Evaluation
	8.1 Speedups on Benchmarks
	8.2 Synthesizer Performance
	8.3 Scalability Analysis of Synthesizers
	8.4 Tensorize Synthesis Algorithm
	8.5 Impact of Different Backends

	9 Related Work
	10 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Reusability and Experiment Customization

	References

