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Abstract—Modern tensor compiler frameworks like JAX and
PyTorch accelerate numerical programs by compiling or mapping
Domain-Specific Language (DSL) code to efficient executables.
However, they rely on a fixed set of transformation rules and
heuristics, which means they can miss profitable optimization
opportunities. This leaves significant optimization potential un-
used for programs that fall outside these fixed patterns.

This paper presents STENSO, a tensor DSL program su-
peroptimizer that discovers such missing rewrites. STENSO’s
core is a symbolic program synthesis based search algorithm
that systematically explores the space of equivalent programs.
By combining symbolic execution and sketch-based program
synthesis, it generates equivalent candidate implementations. To
make the search computationally tractable, STENSO further
integrates a cost model with a branch-and-bound algorithm
scheme. This effectively prunes the search space, arriving at
optimal solutions in a reasonable time.

We evaluate STENSO on over 30 benchmarks. The discovered
programs achieve geometric mean speedups of 3.8x over NumPy
and 1.6x over state-of-the-art compilers like JAX and PyTorch-
Inductor. These results underscore the limitations of heuristic-
based compilation and demonstrate STENSO’s effectiveness in
finding such optimizations automatically.

Index Terms—Superoptimization, Tensor Programs, Program
Synthesis, Compiler Optimization

I. INTRODUCTION

High-performance libraries, frameworks and Domain Spe-
cific Languages (DSLs) are a popular way to access the full
potential of modern high-performance CPUs, GPUs and other
hardware accelerators. This is especially true for numerical
computing, where tensor frameworks have become popular,
because the gap between a naive implementation and an
optimized one can be orders of magnitude. Therefore, domain-
specific frameworks like NumPy, PyTorch and JAX have
become the standard for writing high-performance tensor code.

Each of these frameworks provides a composable, flexible
library supporting a wide range of tensor operations. However,
this flexibility means that there are many different ways to
encode exactly the same computation. While semantically
equivalent, each of these encodings may have vastly differ-
ent performance characteristics when evaluated on different

platforms. Ideally, we would have a system that automatically
rewrites inefficient tensor programs into better equivalents.

A. Existing Approaches

Rewriting programs to make them more efficient is at the
heart of compiler optimization and is extremely well studied.

1) Conventional Compilers: Conventional mainstream
compilers, including Tensor DSL frameworks, usually have a
fixed set of transformations and heuristics to apply them [1]–
[5]. However, these frameworks often miss optimization op-
portunities, including at the highest level of abstraction, e.g.
the tensor DSL level. While existing rules are effective for
common cases, they do not cover the space of profitable
rewrites and identities. Consequently, user-written programs
that do not fall into the space of common cases, may not be
optimized. As Psarras et al. demonstrate, many popular Tensor
DSL frameworks fail to optimize even common linear algebra
patterns [6].

2) Searching Optimization Spaces: Alternative code op-
timization approaches explore a predefined transformation,
rewrite, or schedule space and select the best based on a cost
function [7], [8]. While often delivering better performance,
they require the creation of a set of transformations or rules
before exploration can begin, and there may be profitable rules
not considered by the compiler developer.

3) Superoptimization: Instead of applying predefined rules,
superoptimization offers a more powerful alternative than the
previous two. They search the space of all possible programs
to find a program that is both semantically equivalent to the
original and has a desired property, such as optimal perfor-
mance [9]. While this guarantees finding the optimal variant,
superoptimization is limited by the combinatorial explosion of
the search space, making it computationally infeasible for all
but the simplest programs.

B. Our Approach

This paper presents STENSO (Sketch-based TENsor Su-
per Optimizer), a superoptimizer for tensor programs that
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Fig. 1. STENSO enables significant speedups with NumPy, JAX and PyTorch by finding more efficient variants of Tensor DSL programs.

makes the powerful superoptimization technique computation-
ally practical, finding better performing program variants by
systematically exploring the space of symbolically equivalent
Tensor DSL programs. The core idea behind STENSO is to
use symbolic program synthesis to search for computationally
cheaper program variants. It uses symbolic execution and
sketch-based program synthesis to effectively build a search
space of Tensor DSL programs. The search is guided by (1)
a simplification objective, which prunes large parts of the
search space and guides the synthesis towards tensor program
completion, and (2) by pruning the search space further using
a cost estimation model, which considers the cost of sketches.
These guides effectively manage the combinatorial explosion
of the search. Specifically, STENSO uses a branch-and-bound
algorithm to prune the space for solutions that are too costly.
This combination allows STENSO to systematically explore
equivalent programs, while pruning search tree branches that
cannot yield a better solution than the optimum already found.

By operating at the high-level abstraction of the tensor
DSL, STENSO uncovers powerful, non-obvious rewrites that
are missed by conventional tensor frameworks, leading to
significant performance improvements.

This paper makes the following contributions:
• The design and implementation of STENSO, a novel

superoptimization algorithm that uses symbolic sketching
and symbolic algebra solving.

• A new benchmark suite for Tensor DSL program opti-
mization, consisting of 21 real-world and 12 synthetic
benchmarks.

• A demonstration that STENSO discovers Tensor DSL
rewrites that result in geometric mean speedups of 3.8x
for NumPy, 1.6x for JAX and PyTorch.

II. MOTIVATING EXAMPLES

Given a Tensor DSL program as input, P , STENSO pro-
duces an optimized version of the program as output, denoted
Popt, which maintains the same semantics but has reduced
computational complexity. To illustrate the potential for such
optimizations, Figure 1 shows several examples where high-
level optimizations can yield substantial performance gains.

A. Algorithmic Replacements

A potentially very profitable class of tensor DSL level
rewrite optimizations is replacing a computationally complex
algorithm with a less complex one. For example, a com-
mon way of computing the diagonal of a matrix product
is diag(A @ B). While intuitive, this is inefficient, because
the off-diagonal elements are discarded when performing a
full product A @ B. A more efficient approach, which can
be expressed as sum(A ∗ BT , axis = 1), avoids computing
the unused elements by only computing the used diagonal
values. This reduces the computational complexity from cubic
to quadratic.

B. Algebraic Simplifications

Another class of rewrite optimizations is using simplifi-
cation rules to simplify an input tensor DSL program. For
example, an expression like (

√
(x) +

√
(x))2 can be math-

ematically simplified to (2 ∗
√

(x))2, effectively reducing
4 operations to 3 operations. It further simplifies to 4 ∗ x,
a reduction to 1 operation. Such algebraic simplifications
reduce the number of required operations, therefore reducing
computational complexity.

C. Reordering Reductions

Another powerful class of rewrite optimizations is reorder-
ing operations that reduce dimensions. Consider the expression
a ∗ A @ B, whereas a is a scalar, A a 2D tensor, and B a
vector. A left-to-right evaluation first performs an element-
wise multiplication of a with A, before the matrix-vector
product. An algebraically equivalent but more efficient variant
is to reorder the computation as a∗ (A @ B). Because A @ B
results in a vector, the scalar a is multiplied by a vector, instead
of a 2D matrix, reducing the number of performed operations.

Evaluating these examples with the tensor DSL frame-
works NumPy, JAX and PyTorch reveals that the rewritten
forms indeed result in improved performance, suggesting that
the rewrites are missing in these tensor DSL frameworks.
STENSO aims to automatically discover such rewrites by
using program synthesis.
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Fig. 2. Overview of the STENSO Synthesis Flow, which generates NumPy DSL sketches using bottom-up enumeration and symbolic execution. STENSO
then performs a sketch-based synthesis search to recursively translate the symbolic trace of the original NumPy program into a symbolically equivalent, but
computationally more efficient version. Note that spec shows only the leftmost element in the target tensor.

III. OVERVIEW

As a tensor program superoptimizer, STENSO takes a
tensor program as input and searches for a semantically equiv-
alent, but more computationally efficient, version. It systemat-
ically explores the space of possible program implementations
using a sketch-based program synthesis approach [10], [11],
illustrated in Figure 2. A core contribution of STENSO is
its search strategy. While sketch-based synthesis with simple
greedy search has been used for code translation [11], this
is insufficient superoptimization. STENSO thus integrates a
cost model with a branch-and-bound algorithm to make the
otherwise exhaustive exploration computationally tractable.

A. Symbolic Execution of the Original Program

The process begins with the Original Program, P , in
this example dot(mul(A, C), B). This program is first
converted into a symbolic mathematical representation through
Symbolic Execution. The result is a symbolic expression
capturing the program semantics, which serves as the Target
Specification, denoted Φ, for the synthesis stage (In this
example, A1 ·B1 · C1 +A2 ·B2 · C2 +A3 ·B3 · C3).

B. NumPy Sketch Generation

Concurrently, as shown on the left of Figure 2, STENSO
systematically enumerates programs from a given NumPy
Grammar, consisting of fundamental operations (e.g. dot,
add, mul, etc.) to generate sketches. Through a systematic
Bottom-Up Enumeration, it first generates a set of small pro-
gram stubs of increasing depth. Each of these stubs is further
converted into sketches by systematically introducing unknown
variables (holes). The stubs and sketches are then symbolically
executed to create a library of (sketch, expression) tuples. For
example, the simple sketch add(A, B) is paired with the
symbolic expression A1+B1. This library of sketches serves as
the building blocks that the main synthesis stage uses to search
for NumPy implementations that are symbolically equivalent
to the symbolic target expression.

C. Sketch-based Program Synthesis

The core of STENSO is a Sketch-based Program Synthesis
algorithm, shown in the center, which performs a top-down
search to assemble the previously generated sketches in a
way that is equivalent to the symbolic target expression. This
recursive search is guided by two key metrics: Firstly, we
restrict the search space to only consider sketches that simplify
the specification (Section V-A). Secondly, we guide the search
with an estimate of the computational cost of the partial
program assembled so far (Section V-B). This integration of
cost guidance via a branch-and-bound approach ensures that
STENSO produces highly efficient tensor code in a reasonable
time.

The search starts with the symbolic execution of the original
program as the target specification. It then matches each of the
library’s sketches to the specification, using a symbolic algebra
solver. For instance, consider a target specification A1 + B1

and a sketch add(??, B). The solver computes what the
expression for the unknown ?? would need to be to make the
program equivalent to the target specification, which would be
A1. As this specification is simpler than the previous one, this
sketch qualifies for further exploration. The process continues
recursively – in each step, STENSO searches for a sketch in
its library that refines this remaining part of the spec further,
eventually finding add(A, B).

In the more complex example in Figure 4, the recursive
process eventually synthesized a first program that is sym-
bolically equivalent to the target specification: dot(mul(A,
C), B). However, note that other parts of the search tree
lead to valid solutions as well, resulting in other candidate
programs. As valid candidate programs are found, a cost
estimator evaluates their computational efficiency (e.g. in
floating-point operations). If, at any point, a branch we are
exploring exceeds the best estimated cost we have seen so far,
we discard this branch and proceed to the next branch in the
search tree. The search continues, finding alternative programs,
e.g. mul(dot(A, B), C), which is also equivalent to the
target spec but has a lower cost of 6 FLOPS. When the search
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Algorithm 1 Core Synthesis Algorithm
1: function SYNTHESIZE(P )
2: costmin ← ESTIMATE(P )
3: Φ← SYMEX(P )
4: stubs, sketches← GENSKETCHES(P,G)
5: score← GETSIMPSCORE(Φ)
6: (res, score)←DFS(Φ, score, 0, stubs, sketches, costmin)
7: if score < costmin then
8: return res
9: else

10: return P

tree is fully explored, the program with the minimal cost is
returned as the final, optimized output.

In general, sketch-based synthesis can require exploring a
large search space. A key contribution of STENSO is to make
this search computationally tractable via the use of a cost
model and a branch and bound scheme to terminate any search
tree paths that are guaranteed not to contain a solution better
than the best one found so far.

In the next sections, we will give more detailed descriptions
of each of the stages.

IV. SYMBOLIC EXECUTION AND SKETCH GENERATION

To synthesize equivalent NumPy programs, STENSO’s
synthesis algorithm requires several inputs, as shown in Al-
gorithm 1: The symbolic expression of the input program,
which serves as the target specification; A set of sketches
used as building blocks for the target program; And a cost
estimate of the initial program for the branch-and-bound
pruning optimization.

A. Program Specification via Symbolic Execution

The primary goal of the synthesis task is to find a program
in the NumPy Tensor DSL that is semantically equivalent to an
input program. To check for this equivalence without relying
on concrete example executions, we first translate the input
program into a symbolic representation, which we denote Φ.

Specifically, we lower the NumPy program into a loop-
level representation and execute it on SymPy symbols. Instead
of concrete numerical values, the input tensors are populated
with symbolic variables. For example, input tensors A or B
have elements that are symbolic variables Ai,j , Bk. As the
symbolic execution engine processes the operations in the
input program, it builds up a single, comprehensive mathe-
matical expression over these input symbols. The result is a
symbolic expression, denoted Symin, capturing the data-flow
and computational semantics of the original program, which is
invariant to its syntactic form, removing the need for explicit
normalization on the syntactic level. For example, a program
that computes the element-wise squared difference of two
input tensors A and B would produce a symbolic expression
algebraically equivalent to (A − B)2. This expression serves
as the formal specification that our algorithm will try to
synthesize programs for.

⟨F⟩ |= np.full(⟨S⟩,⟨F scalar⟩) | np.triu(⟨F⟩) |
np.tril(⟨F⟩) | np.sum(⟨F⟩,⟨D⟩) |
np.transpose(⟨F⟩,⟨D⟩) | np.sqrt(⟨F⟩) |
np.add(⟨F⟩,⟨F⟩) | np.subtract(⟨F⟩,⟨F⟩) |
np.multiply(⟨F⟩,⟨F⟩) | np.divide(⟨F⟩,⟨F⟩) |
np.dot(⟨F⟩,⟨F⟩) |
np.tensordot(⟨F⟩,⟨F⟩,⟨D⟩,⟨D⟩) |
np.power(⟨F⟩,⟨F⟩) |
np.where(⟨B⟩,⟨F⟩,⟨F⟩) | FArg | FCons

⟨B⟩ |= np.full(⟨S⟩,⟨B scalar⟩) |
np.triu(⟨B⟩) | np.tril(⟨B⟩) |
np.less(⟨F⟩,⟨F⟩) | BArg | BCons

⟨ B scalar⟩ |= BArg_scalar | BCons_scalar

⟨ F scalar⟩ |= FArg_scalar | FCons_scalar

⟨ D⟩ |= DCons

⟨ S⟩ |= SCons

Fig. 3. Grammar of considered NumPy operations. F represents a tensor of
floats, B a tensor of bools, F scalar a float scalar type, B scalar a boolean
scalar type. S is a shape type and D is a dimension type, both referred to
as attributes, FArg, BArg, SArg, DArg, FArg scalar, and BArg scalar are
terminal symbols and represent any input to P of the corresponding type.
FCons, BCons, SCons, DCons, FCons scalar, and BCons scalar are constants
found in the input program and have the corresponding types. Any non-
terminal symbol can be replaced by an input to the original function or a
constant from the original function that is of the same type.

B. NumPy Sketch Generation

Given the symbolic expression, the next step is to generate
a set of NumPy sketches from the target NumPy DSL, defined
by the grammar in Figure 3. A sketch is a short program
from the grammar shown, containing one or more “holes”,
which are placeholder variables that can be filled in by other
expressions, or on the sketch level sketches. This technique
effectively structures and reduces the search space of the
search algorithm.

The process begins by creating a base set of simple program
stubs. These stubs are small, complete programs directly
resulting from production rules in the grammar. We generate
these stubs using a standard bottom-up enumerative algo-
rithm [12], [13]. That is, we initially generate all stubs that
are constants or inputs. At each iteration, we generate more
program stubs by combining operations with the previously
generated stubs.

For each stub, we then generate a corresponding sketch
by systematically replacing its variable symbols (i.e.,
its concrete inputs) with holes. For example, from the
stub np.subtract(A, B), we would generate sketches
np.subtract(??, B) and np.subtract(A, ??),
where ?? is a hole to be expanded on.

We limit the depth of the bottom-up search to 2 itera-
tions, which provides a sufficiently expressive set of program
sketches for our sketch-based search process to efficiently
search. Throughout this enumeration process, we leverage type
checking to discard any syntactically or semantically invalid
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Algorithm 2 Synthesis via Recursive Sketch Simplification and Branch and Bound
1: function DFS(ϕ, score, level, cost, stubs, sketches, costmin) ▷ costmin is pass-by-reference.

▷ Base Case: Find a direct template match.
2: matching ← ∅
3: for stub in stubs do
4: if MATCH(ϕ, stub) then
5: matching ← matching ∪ {stub}
6: if matching ̸= ∅ then
7: best match← argmint∈matching(t.cost)
8: return (best match, best match.cost)

▷ Recursive Case: Simplify the problem using sketches.
9: best program← nil

10: best cost←∞
11: sketchesexplore ← SOLVE(ϕ, sketches) ▷ Find sketches that could match Φ.
12: sketchesexplore ← PRUNE(sketchesexplore, score) ▷ Prune sketches that do not simplify Φ
13: for sk in sketchesexplore do
14: costtotal ← cost+ sk.cost, inputs← [], success← true
15: for hole in sk.holes do ▷ Recursively synthesize each input (hole) of the sketch.
16: if costtotal ≥ costmin then ▷ Branch and bound pruning.
17: success← false, break
18: (res, costhole)← DFS(hole.spec, sk.score, level + 1, costtotal, stubs, sketches, costmin)
19: if res = nil then ▷ Abandon sketch if a hole fails to synthesize.
20: success← false, break
21: costtotal ← costtotal + costhole
22: inputs.append(res)

23: if success then
24: if costtotal < best cost then
25: filled sketch← sk ▷ Fill the sketch with synthesized sub-programs.
26: filled sketch.operands← inputs
27: best program← filled sketch
28: best cost← total cost
29: if level = 0 then ▷ If a complete program has been assembled...
30: if costtotal < costmin then
31: costmin ← costtotal ▷ ...and it’s a new best, update the bound.
32: return (best program, best cost)

program stubs. The resulting valid stubs are transformed
into sketches and provide the raw material for the synthesis
algorithm, which will attempt to find sketches that simplify
the specification.

V. TOP-DOWN SYNTHESIS WITH BRANCH-AND-BOUND

The core of STENSO is the synthesis algorithm described
in Algorithm 2, which takes the symbolic specification of the
input program, the cost of the input program, and the library of
generated sketches to discover a more efficient, equivalent pro-
gram. The synthesizer employs a top-down, recursive search
that systematically explores the space of possible programs.
To navigate this vast search space efficiently, the algorithm
integrates two key strategies: A simplification objective to
guarantee progress and a cost-based branch-and-bound method
to prune suboptimal solutions.

A. Recursive Simplification via Sketching

The synthesis process, embodied by the DFS function in
Algorithm 2, starts with the symbolic expression generated by
symbolic execution of the original program as its initial target
specification, denoted Φ. The aim is to find a program Popt that
behaves the same as Φ, but is computationally more efficient.
Formally, ∀x⃗ Popt(x⃗) = Φ, where x⃗ is the list of inputs
received by the program, and Φ is the expression obtained by
symbolically executing the original program on those inputs.

We assemble Popt iteratively, by nesting sketches. That is,
in each recursive step, the algorithm attempts to decompose
the current specification by applying sketches from its library.

This decomposition is not a simple pattern match. In-
stead, for each sketch containing a hole (e.g., sketch(??,
arg_1, ...)), a symbolic algebra solver is invoked. The
solver’s task is to determine if there exists a symbolic ex-
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pression for the hole ?? that would make the sketch’s output
semantically equivalent to the current target specification. That
is, we look for a sketch such that:

∃expr sketch(expr,arg_1, . . .) = Φ

If a solution exists, this expression for the hole becomes
the new, simpler sub-problem, the ”hole specification”, and is
used as the specification on the next recursive call. Note that
a sketch with multiple holes will have a hole specification for
each hole. In algorithm 2, the call SOLVE returns the list of
all sketches from this library that can be made equivalent to
the current specification, along with their corresponding hole
specifications.

Crucially, the search exclusively considers sketch appli-
cations that monotonically simplify the specification along
a search path. In algorithm 2, the call PRUNE returns all
sketches whose hole specification(s) are simpler than the
current specification.

We estimate how complex a specification is by considering
the number of unique program inputs it contains. That is, given
a specification Φ, we calculate the specification complexity
as |var(Φ)|density(Φ), where |var(spec)| is the number
of unique program inputs in Φ. density(Φ) represents the
sparsity of the computation, defined as the ratio of non-zero
elements to total elements in the symbolic tensor. Operations
that mask outputs, such as np.where, reduce the density. By
incorporating this metric, the simplification objective supports
such masking operations.

A sketch is deemed to simplify the specification ϕ if the
average specification complexity of all its hole specifications is
less than the specification complexity of ϕ. This simplification
objective is crucial, as it ensures that each recursive step makes
progress toward a solution.

For instance, if the target specification is algebraically
equivalent to A1 ·B1 · C1, and the synthesizer would test the
sketch mul(??, C). The solver would deduce that for this
to be a valid decomposition, the remaining specification for
the hole must be A1 · B1. This creates a new recursive call
to the DFS function with A1 · B1 as its target. The recursion
terminates in the base case, when a remaining specification is
simple enough to be matched by a program stub (a hole-free
sketch) from the library (lines 3-8 of Algorithm 2).

B. Cost-Guided Pruning with Branch-and-Bound

STENSO’s goal is not just to find any equivalent program,
but the optimal one within its search space. This requires a
complete search that explores all valid program derivations
in the search space. However, an exhaustive exploration of
this potentially vastly large search space is computationally
infeasible.

To make this search tractable, the algorithm uses a classic
branch-and-bound pruning strategy [14]. It maintains the cost
of the best complete program found so far, denoted as costmin.
During the recursive search, as a candidate program is con-
structed from sketches, its estimated execution cost (costtotal)
is accumulated by adding the costs of the used sketches. At

each step, before exploring a new branch, the algorithm checks
if the current accumulated cost, costtotal, already exceeds
costmin. If so, that entire search path is abandoned (pruned).
This is because any complete program derived from this path is
guaranteed to be more expensive than the best solution already
found (line 16). If the search successfully constructs a new
complete program whose total cost is lower than costmin, the
algorithm updates costmin with this new, lower cost and saves
the program as the current best candidate, progmin (lines 26-
27).

The effectiveness of this pruning depends on an accurate
cost estimator. STENSO supports the FLOPS cost estimation
model from the JAX tensor DSL framework, as well as a
cost model built from performance measurements of each
individual sketch, obtained by running it on random inputs
of representative sizes. While the FLOPS estimator provides a
theoretical cost estimation, the latter provides a more realistic
estimate of a program’s performance on a given platform,
leading to more effective and reliable pruning.

VI. EXPERIMENTAL SETUP

This section details the setup for our experimental evalua-
tion. We first describe the benchmarks used, followed by the
tensor frameworks we evaluate on, and finally, the hardware
and software specifications.

A. Benchmarks
We evaluate our approach on a collection of benchmarks

consisting of numeric programs. These are drawn from two
sources: Real-world code extracted from public GitHub repos-
itories, as detailed in Table I, and a set of synthetically
generated expressions, shown in Table II. For the benchmarks
sourced from GitHub, we preserved the tensor characteristics
of their inputs, such as their ranks and data types, to ensure
they are representative of practical use cases. The combined
suite covers a diverse set of domains and varies in complexity,
containing expressions with up to six operations.

B. Tensor DSL Frameworks
Our performance evaluation includes three prominent tensor

DSL frameworks. NumPy as a representative of a framework
with an eager execution model. Further, we evaluate on
JAX and PyTorch-Inductor, which are compilers that optimize
across operations.

• NumPy: A fundamental library for numerical computing
in Python. It operates through an eager execution model,
where operations are processed statement-by-statement,
invoking highly optimized native routines [15]. Conse-
quently, NumPy performs no global analysis or program
rewriting.

• JAX: A high-performance machine learning framework
that uses the Accelerated Linear Algebra (XLA) com-
piler [3]. Unlike NumPy, JAX captures the computation
graph and lowers it to an intermediate representation.
XLA then applies a series of compiler passes that uti-
lize pattern matching to perform rule-based rewrites and
operator fusion.
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TABLE I
GITHUB BENCHMARKS USED TO EVALUATE STENSO.

Benchmark Computational Pattern Application Domain Original Implementation GitHub

diag_dot Calculates Gaussian variance reduction. Astrophysics np.diag(np.dot(A, B)) �
elem_square Calculates differences for L2 norm. AI/ML np.power(A, 2) �
log_exp_1 Adds two Gaussian probability densities. AI/ML np.exp(np.log(A + B)) �
log_exp_2 Builds up a constraint Gaussian. Statistical Computing np.exp(np.log(A) - np.log(B)) �
mat_vec_prod Computes total profit for items. Optimization Algorithms np.sum(A * x, axis=1) �
dot_trans Calculates rotation matrix for alignment. Biomechanics np.dot(A.T, x.T) �
scalar_sum Calculates a weighted statistical moment. Environmental Science np.sum(A * x, axis=0) �
vec_lerp Creates a color gradient from distance. Computer Graphics np.stack([(x*a + (1-a)*y) for

a in A])
�

euclidian_dist Calculates Euclidean distance of matrix. Scientific Computing np.sum(np.power(A, 2),
axis=-1)

�

common_factor Combines vectors for smoothing. Augmented Reality A * B + C * B �
inner_prod Calculates weighted average ion charge. Physics np.sum(a, b) �
scale_dot Computes matrix product with scaling. Benchmarking np.dot(a * A, B) �
reshape_dot Kernel of a scientific simulation. Benchmarking np.reshape(np.dot(np.reshape(A,

(r,q,1,p)), B), (r,q,p))
�

dot_trans_2 Double transpose of a matrix. Physics Simulation np.transpose(np.transpose(A)) �
power_neg Element-wise inverse of a matrix. AI/ML np.power(A, -1) �
sum_sum Sums a matrix over two axes. AI/ML np.sum(np.sum(A, axis=0),

axis=0)
�

sum_stack Stacks and sums multiple matrices. Computational Biology np.sum(np.stack([A, B, C],
axis=0), axis=0)

�

sum_diag_dot Calculates trace of a dot product. Audio Processing np.sum(np.diag(np.dot(A, B))) �
max_stack Stacks and finds element-wise max. Computational Biology np.max(np.stack([A, B],

axis=0), axis=0)
�

trace_dot Calculates trace of a matrix product. Computer Graphics np.trace(A @ B.T) �
reorder_dot Computes the quadratic form xTAx. Network Simulation x.T @ A @ x �

TABLE II
SYNTHETIC BENCHMARKS USED TO EVALUATE STENSO.

Benchmark Original Implementation

synth_1 (A * B) + 3 * (A * B)
synth_2 A + B - A - A + B * B - B
synth_3 (A + B) / np.sqrt(A + B)
synth_4 A + A + B - A - A - B * B
synth_5 np.power(np.sqrt(a), 4) + 2 * B
synth_6 np.power(np.sqrt(A) + np.sqrt(A), 2)
synth_7 np.power(A, 6) / np.power(A, 4)
synth_8 A * B + A * B
synth_9 np.sum(np.sum(A * x, axis=0))
synth_10 np.stack([x * 2 for x in A], axis=0)
synth_11 A * A * A * A * A
synth_12 A + A + A + A + A

• PyTorch: We evaluate PyTorch-Inductor, PyTorch 2’s
compiler backend [4]. Like in JAX, the Python program
is captured into a graph representation. Inductor then
applies passes of graph transformations, including pattern
matching and fusion, before compiling to parallel C++ or
Triton [16] code for accelerated execution.

C. Cost Model for Branch-and-Bound Pruning

We use the measurement-based cost model, as it more
accurately captures hardware-specific performance than the
FLOPS model. For instance, it distinguishes between the costs
of FLOP-equivalent operations like np.power(A, 2) and A*A,
enabling more effective pruning. During a one-time offline
phase, we benchmark every generated sketch on the target

hardware using representative tensor shapes and store these
measurements in a lookup table. During the synthesis search,
we do not re-measure performance; instead, the estimated cost
(costtotal) of a partial program is calculated by summing the
pre-computed costs of its constituent sketches from this table,
providing an estimate of a program’s performance on a given
platform.

D. Implementation, Hardware, and Software

STENSO is implemented in C++ and Python and builds on
several core software libraries. We use JAX [3] and MLIR-
HLO [17] to compile NumPy programs into a scalar-level
MLIR representation and further use the MLIR compiler
infrastructure [2] for program manipulation. The SymPy li-
brary [18] is used for symbolic execution, manipulation and
solving.

Synthesis experiments were performed on a machine
equipped with an AMD Ryzen 9 7950X CPU (32 threads)
and 64 GB memory. Performance benchmarks were run on
three separate systems: The described AMD system, one with
an Intel Core i7-8700K CPU (12 threads) with 32 GB memory
and another with an Apple M3 Pro CPU (12 cores) with 18
GB memory. The performance evaluations were ran using the
latest software libraries at the time of submission, specifically
NumPy v2.2.6, JAX v0.7.1, and PyTorch v2.8.

VII. EVALUATION

In this section, we present the evaluation of STENSO. We
start with presenting the overall speedups that the programs
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https://github.com/LucaMalavolta/PyORBIT/blob/e11115a41538b7dad5db93427e9c65abcfbcd4e1/pyorbit/models/gp_multidimensional_quasiperiodic_activity_numba.py#L412-L414
https://github.com/axinc-ai/ailia-models/blob/4f72a54e43fbebadf258318d4512bec6c58aec2c/image_manipulation/dfe/dfe_utils.py#L37
https://github.com/acids-ircam/creative_ml/blob/64e03f25d37db5a6c59c74691a070f85f5c8332d/cml/data/density.py#L87
https://github.com/selective-inference/Python-software/blob/e906fbb98946b129eb6713e8956bde7a080181f4/selectinf/sampling/sequential.py#L63
https://github.com/anyoptimization/pymoo/blob/6e1cb8833269eb87c41045d5a4d689624dd46d48/pymoo/problems/single/knapsack.py#L31
https://github.com/kineticstoolkit/kineticstoolkit/blob/102421b5fc2ff973181bdd7c0863df8b2a6fe4cf/kineticstoolkit/external/icp.py#L57
https://github.com/CoLM-SYSU/CoLM202X/blob/55a66e760ae72a228d2971f78e78476112c62e77/extends/CaMa/preprocess/dam/dam_discharge_Class.py#L152
https://github.com/xiangruhuang/HumanCorresViaLearn2Sync/blob/25615f50c47f4cebe2aaccb7826aef94cffdc72f/src/human_corres/smpl/align2scan.py#L286
https://github.com/EMSL-Computing/CoreMS/blob/25a6351cb92e3d65aa6e9eebe278b3e774a711c3/corems/molecular_id/calc/math_distance.py#L134
https://github.com/wbstx/handAR/blob/3e62d47606c994f42bbd766d46eee80e494ba84b/test_video/mesh_demo.py#L124
https://github.com/PlasmaPy/PlasmaPy/blob/6899c30a492b7cd60bb01bde9224b1f15d439bd5/src/plasmapy/diagnostics/thomson.py#L175
https://github.com/spcl/npbench/blob/d6832b33ae49253345ed400b5d8a344960168a74/npbench/benchmarks/polybench/k2mm/k2mm_dpnp.py#L4
https://github.com/spcl/npbench/blob/d6832b33ae49253345ed400b5d8a344960168a74/npbench/benchmarks/polybench/doitgen/doitgen_dace.py#L13
https://github.com/ImperialCollegeLondon/sharpy/blob/ca07a6364522a4b665b5f2b42a0b79f97176f697/sharpy/generators/polaraeroforces.py#L342-L344
https://github.com/dmlc/dgl/blob/3d16000b4170fa741ed9e9667f22ba84d3493026/examples/pytorch/mvgrl/node/dataset.py#L15-L17
https://github.com/zizheng-guo/RhythmFormer/blob/7c9cea2284cecc50e267abefce711a0eb6d72b6e/unsupervised_methods/utils.py#L31
https://github.com/neherlab/treetime/blob/b922a8d6bfc273c13335cf88c4e9bd60e70f9d16/treetime/treeanc.py#L1015-L1017
https://github.com/ai-mastering/phaselimiter/blob/3c951f40ea7e95e08c23c7b5654430f333939698/script/create_reference.py#L61
https://github.com/scverse/scirpy/blob/8e026857049fea876cc38cd4c9df87ff22188dc5/src/scirpy/util/graph/_fr_size_aware_layout.py#L97
https://github.com/DengKaiCQ/VGGT-Long/blob/76b03dd0beb9a0c62c9f69f3f5f3f1e4224fcc90/loop_utils/sim3utils.py#L589
https://github.com/skojaku/core-periphery-detection/blob/6aad458a6d434a3617d33e74f7163d514a27fecb/cpnet/Rombach.py#L94
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Fig. 4. Geometric mean speedups of programs optimized by STENSO over original implementations on using different Tensor DSL frameworks.

discovered by STENSO achieve, then evaluate the perfor-
mance of STENSO’s synthesis algorithm. We then analyze
the discovered programs by grouping them into transforma-
tion classes and analyzing the performance impact per class.
Finally, we express some of the most impactful discovered
rewrites as transformation rules.

A. Speedups of Synthesized Programs

We run STENSO on all of the benchmarks presented in
section VI-A and measure the performance of the original and
STENSO-optimized implementations. We run these measure-
ments on three platforms - AMD, Intel and Apple based.

Figure 4 shows the geometric mean performance im-
provements from programs optimized by STENSO com-
pared to their original implementations. The results show
that STENSO achieves a consistent speedup across all tested
configurations. The most significant performance gains are
observed in the NumPy framework, reaching speedups of 3.8x
on the AMD CPU, with similar substantial gains of 3.7x and
3.7x on the Intel and Apple platforms, respectively. Compiled
frameworks also show notable improvements. For the JAX
compiler, the speedup ranges from 1.5× to 1.9×, while for
PyTorch, it ranges from 1.2× to 1.6×.

These results show the limitations of several modern Tensor
compiler frameworks and demonstrate STENSO’s effective-
ness in finding powerful optimizations.

B. Synthesis Time

Having demonstrated the runtime performance that
STENSO achieves, we will now analyze how quickly
STENSO can optimize programs. Figure 5 shows the time
required for the search algorithm to terminate, practically
speaking, how much time it takes to explore its search space
completely. To further evaluate the effectiveness of the branch
and bound objective, we run the synthesizer in two configu-
rations. First, only with the simplification objective. Second,

with the branch and bound pruning objective, based on the
runtime cost model.

The simplification-only synthesizer, while fast on many
simpler benchmarks, struggles with more complex programs.
It exceeds the synthesis time of the branch-and-bound enabled
synthesizer in 1/3 of the benchmarks and fails to synthesize ap-
prox. 1/4 of the benchmarks, exceeding the timeout threshold
of 10 minutes. Using the simplification objective in combina-
tion with branch-and-bound pruning turns out to be highly
effective. It makes search more tractable, as results show
significantly shorter synthesis times, successfully synthesizing
all benchmarks, including the 1/4 of benchmarks that cause
the unbounded search to time out. With this optimization,
STENSO synthesizes nearly every benchmark in well under
200 seconds. The sole exceptions are diag dot and vec lerp,
which complete in just over 200 seconds. When we compare
the programs found by the simplification-only synthesizer with
the branch-and-bound enabled one, we find that the programs
are equivalent, showing that solution quality doesn’t degrade
with the branch-and-bound optimization.

The results show that the branch and bound optimization
is critical for making the synthesis algorithm computationally
tractable for more complex benchmarks, ensuring it can find
solutions within a reasonable time budget, without degrading
solution quality.

We further compare STENSO against a baseline approach
representative of prior work on tensor program superopti-
mization: a bottom-up enumerator that is similar to the one
used in TASO [19]. As shown in Figure 5, the bottom-
up enumerator failed to scale beyond small kernels due to
the exponential search complexity. STENSO ’s symbolic
cost-guided branch-and-bound search consistently synthesized
kernels faster, where these baseline failed, while guaranteeing
correctness by construction.
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C. Analysis of Optimized Programs

To better understand the sources of performance improve-
ments, we manually analyze the optimized programs and group
them into transformation classes.

In total, we identify five distinct transformation classes,
as shown in Figure 6: Algebraic Simplification, Identity Re-
placement, Redundancy Elimination, Strength Reduction, and
Vectorization. The plot shows the distribution of the bench-
marks across these categories. The most common classes are
Algebraic Simplification and Strength Reduction, comprising
nine and eight benchmarks, respectively.

An analysis of the geometric mean speedup per class reveals
significant performance patterns, as shown in Figure 7 for the
AMD platform. The Vectorization class yields the most sig-
nificant improvements, achieving a geometric mean speedup
of 10.7x on NumPy, 4.4x on PyTorch, and 2.9x on JAX. This
highlights the performance potential of vectorizing iteration-
based NumPy programs, as well as STENSO’s ability to

replace such inefficient code with more effective vectorized
equivalents. The Identity Replacement class also delivers sub-
stantial gains, with a 6.1x speedup on NumPy, 3.5x for JAX,
and 2.1x for PyTorch. This optimization works by substituting
combinations of expensive operations with mathematically
equivalent but cheaper alternatives. This difference stems from
the fact that JAX (via XLA) and PyTorch (via Inductor)
already employ sophisticated compiler passes, including their
own algebraic rewrites and operator fusion optimizations.
These existing strategies significantly optimize the baseline
performance and partially overlap with the efficiency gains
STENSO provides, narrowing the gap between the baseline
and the superoptimized program. However, because these com-
pilers rely on fixed optimization rules, STENSO is still able
to identify high-level efficiencies that fall outside their prede-
fined patterns. Thus, even on compiled frameworks, STENSO
finds valuable optimizations, such as the 4.4x speedup for
PyTorch in the Vectorization class. While geometric means
provide a high-level summary, the detailed benchmark results
in Figure 8 show the performance that STENSO can achieve
on individual benchmarks. For instance, in the Vectorization
category, the vec lerp benchmark achieves a remarkable 16.4x
speedup on NumPy. Similarly, log exp (Identity Replacement)
and reshape dot (Redundancy Elimination) show speedups of
23.6x and 6.1x, respectively. These results show that STENSO
can discover optimizations beyond marginal improvements.

D. Recognizing Rewrite Rules

Having classified the synthesized optimized programs, we
further analyze them to define rewrite rules that can optimize
the input programs. Indeed, we can express some of the
profitable rewrite rules discovered by STENSO. Below are
several examples:
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Fig. 8. Detailed speedups of programs optimized by STENSO over original implementations by transformation class.

• Diagonal Identity Replacement: This rule avoids a costly
full matrix multiplication (A·B) by using a mathematical
identity to compute the diagonal more efficiently, saving
significant compute and memory.

diag(X@Y ) =⇒ sum(X ⊙ Y T , axis=1)

• Vectorization: This transformation replaces an inefficient
Python loop with a single, highly optimized broadcasted
tensor operation, avoiding Python interpreter overhead
in eager execution modes and long traces in compiled
frameworks. ⊙ represents any broadcastable, element-
wise binary operation (e.g., addition, multiplication, etc.).

stack([(c⊙ x) for x in X]) =⇒ c⊙X

• Algebraic Simplification: This rule uses a linear algebra
simplification, which reduces the number of floating-point

operations.
(X)/

√
X =⇒

√
X

These are just some examples of rewrite patterns in pro-
grams discovered by STENSO. These rewrites could be added
to compilers, enabling significant performance speedups.

E. Limitations and Scalability

While STENSO successfully optimizes complex kernels,
its synthesis is computationally demanding, with times reach-
ing approx. 200 seconds for the largest benchmarks. Such
high cost is typical for superoptimization, which exhaustively
searches for global optima, whereas rule-based compilers
settle with local ones. However, this can be seen as a one-
time overhead; the resulting optimized kernels are correct-
by-construction and can be cached and reused indefinitely,
effectively amortizing the synthesis cost over the synthesizer
lifetime.
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The scalability of STENSO is fundamentally bounded by
the search space, which is defined by the grammar (Figure 3)
and the sketch enumeration depth. Increasing the depth causes
an exponential explosion in the number of sketches, however
enables less exploration steps. We found that an enumeration
depth of d = 2 is the optimal value in this trade-off.

Finally, although the current evaluation focuses on CPUs,
STENSO ’s architecture is hardware-agnostic. Because the
cost model is built on profiling of sketches (Section VI-C),
adapting the system to optimize for GPUs or TPUs requires
re-profiling the sketch library on the new target hardware.

VIII. RELATED WORK

Recent work has explored tensor program optimization
from several angles. Methods using three different paradigms
have been explored: Stochastic search, program synthesis, and
equality saturation using e-graphs.

a) General Program Superoptimization: Early work in
superoptimization for general-purpose IRs relied on stochastic
search. STOKE [20], for instance, uses Markov chain Monte
Carlo (MCMC) sampling to explore a space of instruction
rewrites, often discovering sequences that outperform standard
compilers but without offering completeness guarantees. Other
search techniques focus on systematically pruning the vast
optimization space, for example, Telamon uses branch-and-
bound for GPU kernels [21].

A significant advancement came with program synthesis
methods. Souper [22] pioneered the use of SMT-based synthe-
sis to automatically discover and verify peephole optimizations
for LLVM IR. Building on this, recent systems like Hydra [23]
generalize concrete rewrites into polymorphic rules, and Mino-
taur [24] synthesizes optimal, verified SIMD code sequences.
The practical applications of program synthesis have also been
demonstrated in other domains, such as for generating highly
optimized sorting kernels [25]. Program synthesis has also
been used extensively for the translation of legacy code into
high-level DSLs [11], [26]–[30]. None of these techniques
considers searching for best-performing program variants in
the target DSL.

Equality saturation offers a more systematic approach, using
e-graphs to compactly represent a vast space of program
equivalences [31], [32]. Rather than depending on a fixed set
of manually written rules, systems like Ruler [33] automate
the discovery of compact, expert-quality rewrite rules that can
then be used by e-graph–based optimizers.

b) Superoptimization in the Tensor Domain: These foun-
dational techniques have been adapted to the domain of tensor
programs. E-graph-based optimizers for tensor graphs, such
as TENSAT [34], apply a set of rewrite rules to find effi-
cient program variants. While equality saturation effectively
optimizes programs by applying a large set of equivalences,
it is fundamentally limited by the completeness of its given
rewrite rules. In contrast, STENSO discovers programs from
first principles without given rules. Consequently, STENSO
is complementary to equality saturation: the novel transforma-

tions it discovers can be extracted and added as new rules to
e-graph-based systems to enhance their optimization power.

Synthesis-based approaches for tensors, in contrast, often
focus on generating a library of rewrites. TASO [19] generates
graph substitutions by bottom-up enumerating small neural
network subgraphs, while PET [35] extends this to partially
equivalent transformations that are later corrected. More re-
cently, Mirage [36] extended this idea to optimize across
different representation levels. These approaches produce a
static library of transformations to be applied in a separate
optimization stage.

STENSO effectively bridges these paradigms. In contrast
to bottom-up methods like TASO, which generate small graph
substitutions, STENSO scalably and exhaustively explores the
implementation space of a given grammar for a given symbolic
expression (cf. Figure 5). Furthermore, while e-graph systems
are fundamentally limited by defined rule sets, STENSO is not
constrained in this way and can discover novel transformation
rules. This makes STENSO a complementary approach, as the
transformations it discovers can be incorporated into the rule
sets of conventional compilers and e-graph-based optimizers
to enhance their capabilities.

IX. CONCLUSION

We presented STENSO, a tensor program superoptimiza-
tion approach that uses symbolic sketching and cost-driven
pruning to discover efficient tensor programs missed by con-
ventional compilation methods. We showed that STENSO
discovered more efficient programs, achieving significant ge-
ometric mean speedups over a variety of benchmarks, un-
covering impactful missing rewrites in state-of-the-art tensor
frameworks. Future work will develop hardware-aware cost
models and explore integrating the synthesizer into compiler
backends to automatically discover rewrites.

DATA-AVAILABILITY STATEMENT

The source code, benchmarks, evaluation, and automated
scripting are publicly available on Zenodo, allowing experi-
mentation and reproducibility [37].

APPENDIX

This artifact provides the complete source code, evaluation
benchmarks, and analysis scripts for STENSO, a sketch-based
program synthesizer designed for superoptimizing Tensor DSL
programs. The artifact includes an automated Docker-based
pipeline to:

• Build and run the STENSO synthesizer and a bottom-up
synthesizer as baseline.

• Execute synthesis experiments on provided and custom
benchmarks.

• Measure key metrics presented in the paper: Synthesis
times and speedup of superoptimized programs.

• Reproduce all quantitative results and plots (Figures 4, 5,
6, 7, and 8) presented in the paper.
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A. Artifact Check-List (Meta-Information)
• Algorithm: Sketch-based program synthesis for Tensor DSL

superoptimization.
• Compilation: Docker (version 28.3.3) is used for isolated

build/run environment.
• Dataset: Benchmarks from open-source software repositories,

as described in the paper, as well as synthetic benchmarks.
• Run-time environment: Ubuntu 22.04 (in Docker container).
• Hardware: Multicore CPU with 32 threads (e.g., AMD 7950X

or equivalent) and 64GB RAM.
• Metrics: Synthesis Time (seconds), Speedup (relative to base-

line).
• Output: Synthesized program files, CSV metrics, PDF plots

(Figures 4–8).
• How much disk space required (approximately)?: 30 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 10 minutes.
• How much time is needed to complete experiments (approx-

imately)?: Approx. 24 hours (on 32-thread CPU).
• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT License.
• Current Version: https://doi.org/10.5281/zenodo.17638076

B. Description
1) How Delivered: The artifact is delivered as a compressed

.tar.gz archive via Zenodo for persistent storage and is config-
ured to run using a self-contained Docker setup, which simplifies
installation and dependency management.

2) Hardware Dependencies: Experiments were run on an
AMD 7950X multi-core CPU (32 threads), 64 GB @ 6000 MT/s
memory. Similar hardware is required for results similar to the plots.

3) Software Dependencies: Docker is the only required soft-
ware on the host system. STENSO builds several libraries, such as
MLIR, JAX, and SymPy, which are automatically built and installed.

4) Data Sets: Benchmarks are stored as python files in the
stenso/eval/benchmarks directory.

C. Installation
Create a new directory, download the file from Zenodo, and untar.

tar -xzf artifact.tar.gz

D. Experiment Workflow
We provide a fully-automated workflow that automatically sets up

the docker environment, runs all experiments, and plots the results.
Plots and synthesized programs are stored in the out directory.

Change into the unzipped cgo26_stenso directory. The auto-
mated workflow can be invoked with the following command.

./run_all.sh

This will first build the necessary Docker environment, then run
several synthesis experiments for STENSO and a bottom-up synthe-
sizer as baseline. Finally, it executes performance measurements on
the synthesized programs and generates the resulting evaluation plots
(Figures 4 through 8) and synthesized program files.

E. Evaluation and Expected Result
After running the run_all.sh script, results are stored in the

host’s local out directory, which is mounted into the container.

ls out
benchmarks_synthesized/
fig4.pdf fig5.pdf fig6.pdf fig7.pdf fig8.pdf

Synthesized programs are stored in the
benchmarks_synthesized directory. The PDF should
approximately match Figures 4-8, assuming experiments are ran on

hardware comparable to the one described. Besides the currently
evaluated platform, we plot performance numbers for the three
platforms evaluated in this paper for comparison. Specifically, these
three platforms are: AMD 7950X, Intel I7-8700K, and Apple M3
Pro.

F. Reusability and Experiment Customization
STENSO is reusable as individual executable Python program,

allowing experimentation with custom Tensor DSL programs, and
integration in custom compilation flows.

The entry point for running STENSO individually, outside of the
evaluation flow is the script stenso/main.py. This script provides
several configuration options for users to adapt the synthesizer to their
needs. Below is an excerpt, summarizing the main options:

python stenso/main.py --help
--program Source program in Python.
--synth_out Output file containing

the synthesized program.
--cost_estimator Cost estimator to use.

Supported: flops, measured
...

The following shows two example use cases for customization,
along with corresponding STENSO invocations.

a) Synthesizing Custom Programs: To synthesize custom
programs, STENSO can be invoked directly with the desired source
program. Source files must be in Python and run on NumPy arrays.

Assuming the source file is original.py, the command be-
low superoptimizes the program, and upon completion saves it as
optimized.py.

python stenso/main.py --program original.py \
--synth_out optimized.py

b) Configuring the Cost Estimator: STENSO’s search al-
gorithm is guided by a cost estimator, which can be configured using
the --cost_estimator flag. The flops estimator corresponds
to the FLOP count. The measuring option can be used to perform
actual runtime measurements for a more accurate cost model, which
is useful when optimizing for hardware-specific performance.

To run synthesis using the measuring cost estimator on a custom
program, omitting the output file to print the result to stdout:

python stenso/main.py --program input.py \
--synth_out optimized.py \
--cost_estimator measured
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