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Domain-specific languages (DSLs) for machine learning are revolutionizing the speed and efficiency of
machine learning workloads as they enable users easy access to high-performance compiler optimizations
and accelerators. However, to take advantage of these capabilities, a user must first translate their legacy
code from the language it is currently written in, into the new DSL. The process of automatically lifting code
into these DSLs has been identified by several recent works, which propose program synthesis as a solution.
However, synthesis is expensive and struggles to scale without carefully designed and hard-wired heuristics.
In this paper, we present an approach for lifting that combines an enumerative synthesis approach with a
Large Language Model used to automatically learn the domain-specific heuristics for program lifting, in the
form of a probabilistic grammar. Our approach outperforms the state-of-the-art tools in this area, despite only
using learned heuristics.
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1 Introduction

Recent years have witnessed rapid growth in the number and importance of machine learning
workloads. While used in a diverse number of applications, their fundamental building block is
tensor contractions, which dominate execution time. For this reason, a large number of specialized
tensor domain-specific languages (DSLs) have appeared, capable of producing high-performance
code ([1, 6, 13, 14, 17, 34]). Their associated compilers are capable of extracting domain-specific
information to exploit hardware-specific features and vendor-tuned libraries.
To access such performance, applications have to be written in one or more high-level DSLs.

While this is acceptable for new applications, it means that existing workloads written in standard
programming languages are unable to directly access a platform’s potential performance. While

Authors’ Contact Information: Yixuan Li, University of Edinburgh, Edinburgh, United Kingdom, yixuan.li.cs@ed.ac.uk;
José Wesley de Souza Magalhães, University of Edinburgh, Edinburgh, United Kingdom, jwesley.magalhaes@ed.ac.uk;
Alexander Brauckmann, University of Edinburgh, Edinburgh, United Kingdom, alexander.brauckmann@ed.ac.uk; Michael F.
P. O’Boyle, University of Edinburgh, Edinburgh, United Kingdom, mob@inf.ed.ac.uk; Elizabeth Polgreen, University of
Edinburgh, Edinburgh, United Kingdom, elizabeth.polgreen@ed.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART227
https://doi.org/10.1145/3729330

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 227. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0007-4619-3476
HTTPS://ORCID.ORG/0000-0003-2767-1130
HTTPS://ORCID.ORG/0000-0001-5774-3970
HTTPS://ORCID.ORG/0000-0003-1619-5052
HTTPS://ORCID.ORG/0000-0001-9032-7661
https://doi.org/10.1145/3729330
https://orcid.org/0009-0007-4619-3476
https://orcid.org/0000-0003-2767-1130
https://orcid.org/0000-0001-5774-3970
https://orcid.org/0000-0003-1619-5052
https://orcid.org/0000-0003-1619-5052
https://orcid.org/0000-0001-9032-7661
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729330
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3729330&domain=pdf&date_stamp=2025-06-13


227:2 Y. Li, J. W. S. Magalhães, A. Brauckmann, M. F. P. O’Boyle, E. Polgreen

10 Possible
Solutions

LLM Probabilistic
Grammar 

%
%

%

%

Dimensional
Analysis

Search
Candidate

C 
Program

Validation

Bounded
Model Checking

TACO 
Program

Prompt

Left-Hand Side
Dimension

Failure

Failure

Success

Success

Candidate

Fig. 1. Overview of STAGG. We query the LLM to provide 10 possible solutions in TACO that are equivalent

to the input code C. Based on the LLM response, we build a probabilistic grammar and enumerate the space

of template programs described by the said grammar. We validate a candidate using I/O examples, and if

it passes all tests, we proceed to verification to prove equivalence with the original C implementation. The

input code is also analyzed to predict the dimensionality of the left-hand side tensor in the solution.

manually rewriting a program to a DSL may be a worthwhile cost, it becomes a serious impediment
if it has to be repeated for new emerging DSLs. This problem of manual porting or lifting existing
code to higher-level DSLs has been identified by several recent works that propose automated
techniques. The most popular approaches use varying forms of program synthesis, where a DSLs
space is searched for a matching program ([15, 25, 37]). However, program synthesis is expensive
and struggles to scale to multi-dimensional tensor workloads.
To overcome this scalability issue, existing schemes rely on aggressive hard-wired heuristics

that trade-off coverage for time. In C2TACO [25], domain-specific polyhedral analysis is used to
prune the search space. This works well on low-dimensional problems but suffers from exponential
growth. Similarly, in Tenspiler [35], the user provides a template to aid search. While narrowly
effective, such heuristics limit portability and are a limit to generalization.
A completely different approach is to use neural machine translation based on large language

models (LLMs). They have proved highly successful with a number of program generation tasks
[8, 10]. They are fast and scale with program complexity, but unfortunately are inaccurate. What
we would like is to combine the power of LLMs with the accuracy of synthesis.

This paper explores a novel combination of LLMs and program synthesis. It uses an LLM to
suggest a number of possible solutions. It then builds a probabilistic grammar of templates, based
on the proposed solutions, and then uses this grammar to drive an enumerative search of grammar
templates. Our approach, termed STAGG (Synthesis of Tensor Algebra Guided by Grammars) is able
to outperform all existing approaches. It achieves 99% lifting accuracy on a pre-existing large-scale
benchmark suite of dense tensor algebra and is able to do this without any pre-wired heuristics.

Contributions: This paper makes the following contributions:

• Two novel synthesis algorithms that combine LLM guesses and program synthesis to scalably
lift dense tensor code.
• A large-scale evaluation of state-of-the-art tensor program lifting.
• Greater coverage than existing techniques.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 227. Publication date: June 2025.



Guided Tensor Lifting 227:3

2 Motivation

The tensor DSL we target in our paper is TACO [17]. Whilst TACO may be best known for
sparse computation, it also gives superior performance over dense code on multicores and GPUs.
Although recent work has tackledmatching certain sparse computation to specific high-performance
APIs [12, 19], this paper focuses solely on lifting legacy dense tensor computation to a high-level
programming language [16].
TACO syntax is based on Einstein summation (einsum) notation, a language for representing

linear algebra operations using indexing expressions. The TACO compiler takes a tensor expression
as input and generates highly optimized kernels. TACO-generated code exploits the parallel nature
of both dense tensor algebra operations and multi-core/GPU architectures. It uses domain-specific
knowledge to optimize and auto-parallelize, which related work has reported results in average
speedups of 1.8× and 24.1× over the original program on CPUs and GPUs, respectively [25].

Einsum notation: TACO supports einsum notation, as do other frameworks including PyTorch
[34], Halide [36]. While these alternatives may support a larger set of operations, targeting TACO
allows a direct apples-to-apples comparison against prior work [25, 35].

Einsum expressions consist of a sequence of indexing variables, each one representing an iterator
over a different tensor dimension. The traditional einsum notation expresses tensor multiplication
and implicit summation on the indices that are absent in the output tensor. TACO uses an extended
version of the original notation that also supports subtraction and division. Unlike other einsum-
based frameworks such as the NumPy [14] einsum API, the tensors in TACO programs must be
explicitly declared. Figure 5 shows the TACO grammar addressed in this paper.

Problem statement: Formally, given a legacy program 𝑝𝑠 , written in a low-level language such
as C, STAGG aims to find an equivalent program 𝑝𝑡 written in TACO, that meets the specification

∀®𝑥 .𝑝𝑠 ( ®𝑥) = 𝑝𝑡 ( ®𝑥),

where ®𝑥 is a vector of input arguments. That is, 𝑝𝑡 produces the same output as 𝑝𝑠 on all possible
inputs.
Example: The synthesis task that STAGG solves is to synthesize a TACO program 𝑝𝑡 such

that ∀®𝑥 .𝑝𝑠 ( ®𝑥) = 𝑝𝑡 ( ®𝑥), where ®𝑥 is a vector of inputs, in this case Mat1, Mat2, Result. We now
illustrate this approach on the example input C program shown in Figure 2.
Given this program, STAGG first queries a large language model to ask for a set of candidate

solutions. The prompt template we use is shown below in Prompt 1. This gives us the set of
candidate solutions shown in Response 1.
STAGG then learns a probabilistic context-free grammar that captures this set of solutions as

templates.
We describe how we learn this grammar in Section 4.3. The grammar in Figure 3 shows probabil-

ities for each production rule in parentheses. Each tensor and constant in the grammar is treated as
a symbolic variable that can later be replaced when the template is instantiated.
We use a weighted A∗ search to explore the space of the grammar, inspired by work in the

literature [21, 23], enhanced with penalty functions that penalize (partial or complete) templates
that fail to adhere to syntactic constraints. When a complete template is found, this is passed to a
template validator, which searches for all possible instantiations of the template and evaluates them
against a set of input-output examples. A valid template, in this instance, would be the template
a(i) = b(i,j) * c(j). This is instantiated to the concrete program Result(i) = Mat1(i,j) *
Mat2(j). We compile this TACO program using the TACO compiler into C code, and check with
bounded model checking that the two pieces of C code are equivalent.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 227. Publication date: June 2025.
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1 void function(int N, int∗ Mat1 , int∗ Mat2 , int∗ Result){

2 int∗ p_m1;

3 int∗ p_m2;

4 int∗ p_t;

5 int i, f;

6 p_m1 = Mat1;

7 p_t = Result;

8 for (f = 0; f < N; f++) {

9 ∗p_t = 0;

10 p_m2 = &Mat2[0];

11 for (i = 0; i < N; i++)

12 ∗p_t += ∗p_m1++ ∗ ∗p_m2++;
13 p_t++;

14 }

15 }

Fig. 2. A C implementation of

∑𝑁−1
𝑖=0 Mat1(𝑓 × 𝑁 + 𝑖) · Mat2(𝑖). The result is a dot product between the 𝑓 -th

row of Mat1 and vector Mat2. The equivalent synthesized TACO expression is a(i) = b(i,j) ∗ c(j).

You are a scientific assistant that knows a lot about

transpilation. Translate the following C code to an expression

in the TACO tensor index notation. The expression must be

valid as input to the taco compiler. Return a list with 10

possible expressions. Return the list and only the list , no

explanations.

{the input C program}

Prompt 1. The prompt requesting 10 TACO expressions for a given C program. The temperature we use is 1.0,
and the role is “You are a scientific assistant that knows a lot about transpilation”.

1 t(f) = m1(i, f) * m2(f)

2 Result(i) = Mat1(i,f)*Mat2(f)

3 Target(i) := Mat1(f,i) * Mat2(i)

4 Result(f) = sum(f, mat1(f, i) * mat2(i))

Response 1. LLM-generated candidate solutions for matrix product computations based on the

implementation in Figure 2. Displayed are a subset of the 10 generated solutions, trimmed for brevity.

1 PROGRAM ::= TENSOR1 "=" EXPR (1)

2 TENSOR1 ::= "a(i)" (1)

3 EXPR ::= TENSOR (0) | CONSTANT (0) | EXPR OP EXPR (1)

4 OP ::= "+" (0 .2) | "−" (0) | "∗" (0 .8) | "/" (0)

5 TENSOR ::= "b(i,j)" (0 .2) | "b(j, k)" (0 .1) | . . .

::= "c(i)" (0 .3) | "c(j)" (0 .2) | "c(k)"

Fig. 3. A probabilistic context-free grammar template.
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3 Overview of STAGG

Lifting to tensor DSLs is a challenging problem for program synthesis, and existing enumerative
techniques are capable of accurate translation but rely on hand-written heuristics in order to scale.
In contrast, highly scalable machine-learning-based approaches like language models fail to give
accurate translations due to the complexity of the benchmarks. The key insight behind STAGG
is that we can achieve the best of both worlds by using an LLM to learn the heuristics for an
enumerative solver.

To that end, STAGG, as shown in Figure 1, implements a multi-staged hybrid synthesis approach.
① First, we construct a prompt based on the input C code and ask the LLM to propose 10

translated solutions.
② We proceed to construct a probabilistic grammar, which represents the space of solutions in

the form of templates.
③ We then search this space of templates with a two-stage enumerative search: first, we search

the space of templates with a search inspired by A∗, then, given a template, we search for a
valid completion of the template against a set of input-output examples.

④ If a completed template is found that satisfies all input-output examples, we perform bounded
verification with a bounded model checker to validate that the completed template is equiv-
alent to the original C code. If it fails verification, we return to the template enumeration
stage.

4 Learning a Grammar of Templates

The first step of STAGG uses a large language model to generate a set of candidate solutions for the
synthesis problem in hand, using the prompt shown in Prompt 1. This gives us a set of candidate
solutions, 𝑃 . We ask for 10 solutions, but we parse in as many solutions as the LLM gives us (which
is sometimes more than 10) and discard any syntactically incorrect solutions.
Given a set of incorrect candidate solutions from the LLM, we hypothesize that, even though

none of the candidate solutions were precisely correct, the correct solution is likely to lie in
the neighborhood of the LLM’s guesses. To that end, we characterize this neighborhood using a
probabilistic grammar of templates. We use a context-free grammar but note that, in principle,
any probabilistic model that characterizes the neighborhood of guesses could be used. First, let us
define some of the preliminaries we will need for this section.

4.1 Preliminaries

Definition 4.1 (Context-Free Grammar, CFG). A context-free grammar (CFG) is a 4-tuple,

𝐺 = ⟨𝑉 , Σ, 𝑅, 𝑆⟩.
𝑉 is a finite set of non-terminal symbols. Σ with Σ ∩ 𝑉 = ∅ is a finite set of terminal symbols.
𝑅 ⊆ 𝑉 × (𝑉 ∪Σ)* is a finite set of production rules, where * denotes the Kleene star. Each production
rule in a context-free grammar is of the form 𝛼 → 𝛽 , where 𝛼 is a symbol in the set of non-terminals
𝑉 , and 𝛽 is a string composed of symbols from (𝑉 ∪ Σ)*. 𝑆 ∈ 𝑉 is the start symbol of the grammar
𝐺 .

Given a context-free grammar 𝐺 = ⟨𝑉 , Σ, 𝑅, 𝑆⟩, with 𝑥,𝑦 ∈ (𝑉 ∪ Σ)* and a rule (𝛼 → 𝛽) ∈ 𝑅,
we write 𝑥 ⇒*

𝐺
𝑦 if there exist strings 𝑢, 𝑣 ∈ (𝑉 ∪ Σ)* such that 𝑥 = 𝑢𝛼𝑣 and 𝑦 = 𝑢𝛽𝑣 , and we

write 𝑥 ⇒* 𝑦 if either 𝑥 = 𝑦 or 𝑥 ⇒ 𝑥1 ⇒ · · · ⇒ 𝑥𝑛 ⇒ 𝑦 for 𝑛 ≥ 0. The language generated by𝐺 ,
denoted L, is the set of all strings over Σ that can be derived from the start symbol 𝑆 by applying a
sequence of production rules from 𝑅. Formally, we define

L = {𝜎 ∈ Σ* | 𝑆 ⇒*
𝐺 𝜎}.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 227. Publication date: June 2025.
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Definition 4.2 (Weighted Context-Free Grammar, CFG). A weighted context-free grammar (𝑤𝐶𝐹𝐺)
is a 5-tuple,

𝑤𝐶𝐹𝐺 = ⟨𝑉 , Σ, 𝑅, 𝑆,𝑊 ⟩,
contains a 𝐺 = ⟨𝑉 , Σ, 𝑅, 𝑆⟩, and a weighted function𝑊 : 𝑅 → R+ maps each production rule to a
positive real number.

Definition 4.3 (Probabilistic Context-Free Grammar, pCFG). A probabilistic context-free grammar,

𝑝𝐶𝐹𝐺 = ⟨𝑉 , Σ, 𝑅, 𝑆, P⟩,

is a specific instance of𝑤𝐶𝐹𝐺 , with the additional constraint that the weights of the production
rules expanding each non-terminal must sum to one. The probability function P : 𝑅 → [0, 1] in
𝑝𝐶𝐹𝐺 assigning a probability P(𝛼 → 𝛽) to each rule. The probabilities must satisfy

∀𝛼 ∈ 𝑉 .
∑︁

𝛽 :(𝛼→𝛽 ) ∈𝑅
P(𝛼 → 𝛽) = 1.

4.2 Constructing a Grammar of Templates

Capturing the search space as a grammar of templates rather than complete TACO programs has
two advantages: first, in comparison to using the full TACO grammar, it reduces the search space
that the enumerative synthesis process has to search; and second, it allows us to group semantically
equivalent but syntactically different candidate expressions together as one when constructing the
weighted context-free grammar. For example, expressions like 1 t(f) = m1(i, f) ∗ m2(f) and
3 Target(i) := Mat1(f,i) ∗ Mat2(i) in LLM Response 1, are equivalent in structure (we use
preprocessing to swap := to = before parsing) shown in Figure 4, yet they would yield different
terminal rules in the full grammar due to variations in notation.

PROGRAM

TENSOR

t f

= EXPR

EXPR

m1 i f

∗ EXPR

m2 f

→

PROGRAM

TENSOR

a i

= EXPR

EXPR

b j i

∗ EXPR

c i

←

PROGRAM

TENSOR

Target i

= EXPR

EXPR

Mat1 f i

∗ EXPR

Mat2 i

Fig. 4. Expression standardization. We omit part of the derivation for brevity.

Given a set of candidate solutions, the first step is to construct a grammar of templates that
captures the full set of solutions. The full grammar for TACO programs,𝐺𝑇𝐴𝐶𝑂 is shown in Figure 5.
A TACO program is any program in L(𝐺𝑇𝐴𝐶𝑂 ).

Definition 4.4 (Templates). We define a TACO template 𝜏 to be any string obtained by taking a
program 𝑝 ∈ L(𝐺𝑇𝐴𝐶𝑂 ) and replacing all tensors with symbolic tensor variables, denoted 𝑡1, 𝑡2, . . .
and all constants with constant symbols 𝑐𝑜𝑛𝑠𝑡1, 𝑐𝑜𝑛𝑠𝑡2, . . .

Given a set of candidate programs from the LLM, 𝑃 , we aim to find a grammar 𝐺𝜏 that contains
a set of templates T that allow us to generate all programs 𝑝 ∈ 𝑃 . A substitution 𝑆 = (𝑡1 ↦→
𝑠11, 𝑡2 ↦→ 𝑠12, . . . , 𝑐𝑜𝑛𝑠𝑡1 ↦→ 𝑠𝑐1) is a mapping from symbolic tensor variables and constant symbols to
terminal symbols in the grammar 𝐺𝑇𝐴𝐶𝑂 . A template generates a program if ∃𝑆.𝜏 .{𝑆} = 𝑝 , where
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𝜏 .𝑆 indicates the result of replacing all occurrences of 𝑡1 with 𝑠𝑡1, and 𝑡2 with 𝑠𝑡2 etc in 𝑡 . Thus, our
requirement on our grammar 𝐺 is the following constraints: first that

∀𝜏 .(𝜏 ∈ T ) =⇒ 𝜏 ∈ L(𝐺),
and second that

∀𝑝 ∈ 𝑃 .∃𝜏 ∈ T ∧ ∃𝑆. 𝜏 .{𝑆} = 𝑝.

This is obviously trivially satisfied by the complete grammar of TACO programs, yet it is
undesirable as it has not reduced our search space. We also aim to create a grammar that is as small
as possible, whilst avoiding over-fitting, and we attempt to optimize this trade-off by the method of
construction described in the following section.

1 PROGRAM ::= TENSOR "=" EXPR

2 TENSOR ::= IDENTIFIER | IDENTIFIER "(" INDEX -EXPR ")"

3 EXPR ::= TENSOR | CONSTANT | "(" EXPR ")" | "−" EXPR |
EXPR "+" EXPR | EXPR "−" EXPR |
EXPR "∗" EXPR | EXPR "/" EXPR

4 INDEX -EXPR ::= INDEX -VAR | INDEX -VAR "," INDEX -EXPR

5 INDEX -VAR ::= "i" | "j" | "k" | "l"

6 IDENTIFIER ::= LETTER ( LETTER | INTEGER )*

7 CONSTANT ::= INTEGER

8 INTEGER ::= DIGIT+

9 LETTER ::= "a" | "b" | ... | "z" | "A" | "B" | ... | "Z"

10 DIGIT ::= "0" | "1" | "2" | ... | "9"

Fig. 5. The grammar for TACO expression in Extended Backus–Naur form, defining the syntax for tensor

expressions, identifiers, constants, and basic arithmetic expressions. The
*
symbol denotes Kleene star,

indicates zero or more repetitions of the preceding element, while
+
denotes Kleene plus, requires one or

more occurrences.

4.2.1 Templatized Candidate Solution. We obtain the grammar 𝐺𝜏 by first inferring a template
for each solution in 𝑃 . The first step involves parsing each 𝑝 ∈ 𝑃 into an Abstract Syntax Tree
(AST), a structured representation that captures the hierarchical organization of the expression.
The AST organizes operations, tensor identifiers, and indices as distinct nodes, allowing systematic
traversal and manipulation. For example, consider the expression 1 t(f) = m1(i, f) ∗ m2(f) in
Response 1 can be parsed as the left tree in Figure 4. We then transform the AST in three stages:
Tensor Templatization, Index Standardization, and Constant Templatization.

Tensor Templatization. We replace each tensor name in the expression with a symbolic tensor
variable. From hereon, we use a, b, c, as the symbolic tensor variables 𝑡1, 𝑡2, 𝑡3, . . ., to align with the
variable names in the code examples. The identifiers are assigned in alphabetical order—starting
with a for the left-hand side tensor and using b, c, d, ... sequentially for tensors on the right-hand
side, based on their order of first appearance. The expression t(f) = m1(i, f) ∗ m2(f) will be
transformed into a(f) = b(i,f) ∗ c(f) by this step.

Index Standardization. The index standardization step ensures that each tensor expression in
the grammar uses a consistent set of index variables, irrespective of the original indices in the
input expression. Each unique index variable encountered in an expression is mapped to the next
available symbol from the canonical set {i, j, k, l} in alphabetical order. The expression a(f) =

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 227. Publication date: June 2025.
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b(i,f) ∗ c(f)will be transformed to a(i) = b(j,i) ∗ c(i) by this step, as shown in the middle
in Figure 4. The index variables do not need to be replaced by template instantiation as they are
local variables to the program.

Constant Templatization. Any constants in the candidate solutions are replaced with a symbolic
constant Const. The template instantiation step will instantiate from a list of constants found in
the input source code.

4.2.2 Refining the Grammar. Given the templatized candidate solutions T , we wish to construct a
probabilistic grammar that represents the space of these solutions, without substantially over-fitting.
The first step is to construct a context-free grammar that defines this set of templates.

We start with the base grammar of TACO programs, shown in Figure 5. We then restrict the
set of tensor names to be the names we have chosen as symbolic tensor variables and constants,
namely 𝑎, 𝑏, 𝑐 , . . . and 𝑐𝑜𝑛𝑠𝑡 , and also limit the set of index variables to be 𝑖, 𝑗, 𝑘, 𝑙, . . .. In theory,
this permits 26 tensor IDs and 4 index variables, because one can always infer whether a variable is
an index or a tensor identifier by context. In practice, we never need this many, and searching a
space that includes up to 26 4-dimensional tensors is obviously impractical. This section addresses
how we initially reduced this search space. Namely, by predicting the dimensions of the tensors in
order to refine the grammar.

4.2.3 Predicting Tensor Dimensions. To accurately predict tensor dimensions for a given program,
we combine insights from a language model (LLM) with static code analysis. Static analysis is used
to predict the left-hand side (LHS) tensor dimensions of an expression, while the LLM is used to
predict dimensions for the right-hand side (RHS). Static analysis, by analyzing the source code, can
determine precisely the dimensions for the LHS tensor, but cannot do the same for the RHS, so we
fall back on heuristics learned by the LLM for the RHS.

Definition 4.5 (Dimension list). We define a dimension list 𝐿𝜏 to be a list of integers (𝑑1, 𝑑2, 𝑑3, . . .)
where 𝑑𝑖 is the dimension for the 𝑖𝑡ℎ unique tensor in the template 𝜏 . We use 𝐿[𝑖] to indicate
accessing the 𝑖𝑡ℎ element of the dimension list 𝐿, and |𝐿 | to indicate the length of the list 𝐿. We list
the dimensions of constants and variables as 0.

For example, the list [1, 2, 4] indicates that the first tensor in the expression has 1 dimension, the
second tensor has 2 dimensions, and the third tensor has 4 dimensions.

Dimension Prediction for RHS Tensors Using LLM. Given a set of templatized solutions {𝜏1, . . . 𝜏10} ∈
T , generated by the LLM, we compute the dimension list for each candidate solution, giving a set
of lists 𝐿T = {𝐿𝜏1 , . . . , 𝐿𝜏10 }. We then filter this list by length, and remove any list that has a length
less than the maximum length, giving the filtered set

𝐿∗T = {𝑙 ∈ 𝐿T | |𝑙 | ≥ |𝐿𝜏𝑖 | ∀𝐿𝜏𝑖 ∈ 𝐿𝑃T)}.
Finally, we return the list that appears most frequently in the filtered set, i.e.,

𝐿𝜏 = arg max
𝑙
|𝑙 ∈ 𝐿∗T |.

From here on, we denote this predicted list 𝐿, and refer to this as the predicted dimension list.

Integrating Static Analysis for LHS Tensors. We use static program analysis to examine the
original program AST and predict the LHS dimension. We apply a dataflow analysis to recover
the dimensions in the array accesses to recover the original dimensionality. For standard array
accesses, e.g., 𝑎(𝑖, 𝑗), we simply count the number of variables used to index the base pointer.
However, it is common that C programs access multi-dimensional elements using affine linear
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expressions on index variables. In such cases, we use array delinearization [30] to recover the
standard array access form and predict the dimensionality by counting the number of indexing
variables. Additionally, some applications use explicit pointer arithmetic to iterate over arrays. We
implement array recovery [11] to retrieve array access expressions from pointers and then apply
delinearization and analyze the indexing expression. In case the output variable is not accessed
through any memory indexing operation, we assume it is a scalar and predict zero-dimensionality.

As the left-hand side tensor necessarily appears first in the expression, we replace 𝐿[1] with the
predicted dimension for the first tensor from the static analysis.

4.2.4 Generating the Context-Free Grammar. Given a dimension list, we wish to generate a grammar
that ensures we only enumerate combinations of indices required to make all possible tensor
expressions that match the predicted dimensions (or, at least reduce this space as far as possible
without increasing the complexity of the grammar significantly). For instance, if the dimension list
is [0, 1, 3], and at least one of the predicted solutions is a = b(i) + c(i,j,k), we will modify the
grammar to fix the production rule for the first tensor to restricted to a, and ensure the grammar
can enumerate b(i) and c(i,j,k), c(i,k,j), c(j,i,k), c(k,i,j), c(j,k,i), c(k,j,i)
for any remaining tensor that appear in the expression. This permits all possible combinations
of indexing of the tensors of the predicted dimensions, allowing the index used for b(i) to be
repeated in any position when indexing c.

Formally, we define this grammar generator as a set of constraints reasoning over the predicted
dimension list 𝐿 and the set of templates T , which, if true, indicate that the production rule should
be included in the grammar. We use [c]𝑟𝑖 to denote that a production 𝑟𝑖 is included within the
grammar if c is true. 𝑖 (𝑃) denotes the number of unique index variables in the set of programs T .
Rules without a constraint automatically appear in the grammar.
1 PROGRAM ::= TENSOR1 "=" EXPR

2 EXPR ::= TENSOR | EXPR OP EXPR

3 OP ::= "+" | "−" | "∗" | "/"
4 [𝐿[1] = 0]TENSOR1 ::= "a"

5 [𝐿[1] = 1]TENSOR1 ::= "a(i)"

6 [𝐿[1] = 2]TENSOR1 ::= "a(i,j)"

7 . . .

8 [𝐿[2] = 0]TENSOR ::= "b" | "Const"

9 [𝐿[2] = 1]TENSOR ::= "b(i)" | [𝑖 (𝑃) > 1]"b(j)" | [𝑖 (𝑃) > 2]"b(k)" |
10 . . .

11 [𝐿[2] = 2]TENSOR ::= "b(i,j)" | "b(j,i)" | [𝑖 (𝑃) > 2]"b(i,k)" | . . .
12 . . .

13 [𝐿[3] = 0]TENSOR ::= "c" | "Const"

14 [𝐿[3] = 1]TENSOR ::= "c(i)" | [𝑖 (𝑃) > 1]"c(j)" | [𝑖 (𝑃) > 2]"c(k)" | . . .
15 . . .

For every element in the dimension list, we add a new tensor id, a, b, c . . . , and index it with
the number of index variables that correspond to the element in the dimension list. For an element
𝑖 , where 𝐿[𝑖] = 𝑛, and for a set of candidate programs where 𝑖 (T ) = 𝑚, we add a production
rule for every possible way of choosing 𝑛 indices from𝑚 index variables. We then remove any
production rules that could not be used parsing any candidate 𝜏 ∈ T , e.g., if no template in T
contains a 2-dimension tensor indexed with the same index variable twice, we will remove b(i,i).
An example generated template grammar is shown in Figure 6.
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1 PROGRAM ::= TENSOR1 "=" EXPR

2 TENSOR1 ::= "a(i)"

3 EXPR ::= TENSOR | CONSTANT | EXPR OP EXPR

4 TENSOR ::= "b(i,j)" | "b(j, i)" | "b(i, k)" | . . .

"c(i)" | "c(j)" | "c(k)"

5 CONSTANT ::= "Const"

6 OP ::= "+" | "−" | "∗" | "/"

Fig. 6. An example generated template grammar, for the dimension list [1, 2, 1, 0], with a maximum of 3
unique indices appearing in the candidate LLM solutions.

4.3 Assigning Probabilities to the Grammar

We now wish to assign a probability to each production rule in the grammar of TACO templates
according to their frequency in the left-most derivations of the candidate solutions. Let us define a
derivation as follows:

Definition 4.6 (Derivations). Given a context-free grammar𝐺 as previously defined, and a sentence
𝑠 ∈ L(𝐺), the derivation of 𝑠 from 𝑆 is a sequence of rules such that 𝑆

𝑟0−→ 𝑠1
𝑟1−→ . . . 𝑠𝑛

𝑟𝑛−→ 𝑠 and
𝑟0 . . . 𝑟𝑛 ∈ 𝑅. We denote the derivation of 𝑠 by the sequence of rules 𝑟0, . . . 𝑟𝑛 as 𝐷𝑠 = {𝑟0, . . . 𝑟𝑛}. The
left-most derivation is a derivation such that all rules expand the left-most non-terminal symbol in
the sentential form.

Given a set of templatized solutions T ∈ L(𝐺𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ), we calculate a weight for each rule 𝑟𝑖 ∈ 𝑅
as the number of times that rule appears in the left-most derivations of the programs. That is,

𝑊 [𝑟𝑖 ] =
∑︁
𝜏𝑖 ∈T
|𝑟𝑖 | ∈ 𝐷𝜏𝑖 ,

where |𝑟𝑖 | is the number of times 𝑟𝑖 appears in the derivation. These weights reflect the usage
frequency of each tensor with specific indices in the expressions provided by the LLM. Note that,
for any production rules used to replace the tensor nonterminal symbols, e.g., 1DTENSOR, which
do not appear in any of the candidate solutions, we assign a default weight of 1. This assignment
ensures that these combinations are considered during the synthesis process with a lower priority.
Using the weights calculated for both operators and tensors, we construct the corresponding

probabilistic Context-Free Grammar (𝑝𝐶𝐹𝐺𝜏 ) by normalizing the weights into probabilities. For
each non-terminal symbol 𝛼 , the probability of applying the production rule 𝛼 → 𝛽 is given by:

P[𝛼 → 𝛽] = 𝑊 [𝛼 → 𝛽]∑
𝛾𝑊 [𝛼 → 𝛾] ,

where the sum in the denominator is over all production rules where 𝛼 appears on the left-hand
side, and 𝛾 may be any string of nonterminal and terminal symbols.

5 Searching the Template Space

We present two algorithms for searching the space of TACO templates. The first is based on a
weighted A∗ search in the literature [21, 23], which searches the grammar of TACO templates in
a top-down manner. We extend this algorithm to incorporate a penalty score that accounts for
known syntactic constraints on the target solution. The second is an adapted version of A∗ , which
combines bottom-up search with A∗ heuristics.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 227. Publication date: June 2025.



Guided Tensor Lifting 227:11

5.1 Top-DownWeighted A
∗

Algorithm 1 outlines the top-down weighted A∗ search with penalties. The search operates over a
probabilistic Context-Free Grammar derived from large language model (LLM) outputs. It maintains
a queue of partial templates, represented as abstract syntax trees, which we can think of as the
frontier of its search. This initially contains just the start symbol of the grammar. At each iteration,
it must determine which of the partial templates should be further explored, which it does based
on the cost of the path taken to reach those partial templates and an estimate of the cost required
to extend the path all the way to the goal. The goal is, ultimately to find a complete template that
we believe is likely to satisfy the specification, that is a template can generate a program 𝑝𝑡 such
that ∀®𝑥 .𝑝𝑡 ( ®𝑥) = 𝑝𝑠 ( ®𝑥).
Thus, when choosing which partial template to further explore, the algorithm chooses the

template with the minimum 𝑓 (𝑥), where 𝑥 is the partial template, defined as:

𝑓 (𝑥) = 𝑐 (𝑥) + 𝑔(𝑥) + X(𝑥),
where 𝑐 (𝑥) calculates the accumulated cost from the start node 𝑆 to current node 𝑥 . 𝑔(𝑥) is the
heuristic estimate of the minimal cost to complete the expression from 𝑥 to a goal node (a template
we believe is likely to satisfy the specification) and X(𝑥) is a penalty term for expressions that
violate domain-specific syntactic constraints. These are calculated as follows:
The accumulated cost 𝑐 (𝑥) is calculated as the sum of the costs of the production rules applied
along the path to 𝑥 :

𝑐 (𝑥) =
∑︁

𝑟𝑖 ∈𝐷𝑥

− log2 P[𝑟𝑖 ],

where 𝐷𝑥 is the sequence of production rules used to reach the node 𝑥 and P[𝑟𝑖 ] is the probability
of production rule 𝑟𝑖 . This cost function transforms probabilities into additive costs, suitable for the
A∗ search.
The heuristic function 𝑔(𝑥) estimates the minimal additional cost required to complete the partial
expression at node 𝑥 to a full expression. It is defined as:

𝑔(𝑥) =
{
0 if 𝑥 ∈ Σ∗,
−∑𝑥𝑖 ∈𝑉 log2 ℎ(𝑥𝑖 ) otherwise,

where 𝑥𝑖 are the non-terminal symbols in the partial expression 𝑥 , and ℎ(𝛼) is the maximal prob-
ability of deriving any terminal string from non-terminal 𝛼 . The value ℎ(𝛼) is defined recursively
for each non-terminal 𝛼 :

∀𝛼 ∈ 𝑉 , ℎ(𝛼) = max
𝛼→𝛽∈𝑅

©­«P[𝛼 → 𝛽] ×
∏
𝛽𝑖 ∈𝛽

ℎ(𝛽𝑖 )ª®¬ ,
with the base case ℎ(𝛼) = 1, if 𝛼 ∈ Σ. This equation represents the maximal probability of

deriving a terminal string from 𝛼 , accounting for the probabilities of production rules and the
maximal probabilities of its components.
The penalty function X(𝑥) assigns additional costs to expressions that do not meet specific
domain criteria. This function can be formalized as follows:

X(𝑥) =
{∑

𝑎∈𝐴 X𝑎 (𝑥) if 𝑥 violates criterion 𝑎,

0 otherwise,

There are 5 criteria {𝑎1, . . . 𝑎5} ∈ 𝐴, and their penalty scores are defined as follows (note that an
infinite penalty score effectively means these expressions will never be considered):
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• X𝑎1 (𝑥) = 10, where 𝑎1 is violated if the grammar includes a constant expression, the length of
𝑥 exceeds 3, and 𝑥 either 1) contains fewer than 2 tensors with index i or 2) lacks a constant
expression. This penalty biases the search against expressions with multiple tensors but
inadequate index variety or missing constants.
• X𝑎2 (𝑥) = 100, where 𝑎2 is violated iff 𝑥 is not the same length as the length of the dimension
list.
• X𝑎3 (𝑥) = ∞, where 𝑎3 is violated if the tensor symbols in 𝑥 are not in alphabetical order by
order of first appearance. This penalty rule avoids enumerating templates that are structurally
identical, and therefore can be instantiated into identical sets of programs.
• X𝑎4 (𝑥) = ∞, where 𝑎4 is violated if 𝑥 is a complete template (no non-terminal symbols), and
repeatedly applies addition, subtraction, or division operations on the same tensor.
• X𝑎5 (𝑥) = ∞, where 𝑎5 is violated if 𝑥 is a complete template (no non-terminal symbols), and
employs fewer than half of the operations defined in the grammar.

Algorithm 1 Top-Down Enumerator
1: procedure Enumerate(𝑝𝐶𝐹𝐺𝜏 )
2: 𝑄 ← {(0, 𝑝𝐶𝐹𝐺𝜏 .𝑆)} ⊲ Initialize queue with start symbol of grammar
3: while 𝑄 ≠ ∅ do
4: (𝑓 , 𝑥) ← 𝑄.𝑝𝑜𝑝 () ⊲ Remove template with minimal 𝑓
5: if depth(𝑥) > maxDepth then

6: continue ⊲ Skip if maximum depth exceeded
7: if 𝑥 ∈ Σ∗ then ⊲ If no non-terminals remain in 𝑥

8: 𝑆 ← Validate(𝑥) ⊲ Try to instantiate 𝑥
9: if 𝑆 ≠ ⊥ then

10: if Verify(𝑥 .{𝑆}) then
11: return 𝑥 .{𝑆}
12: for 𝑥 ′. s.t. (𝑥 𝑟−→ 𝑥 ′ ∧ 𝑟 ∈ 𝑝𝐶𝐹𝐺𝜏 .𝑅) do ⊲ Iterate over all possible expansions of 𝑥
13: 𝑄 ← 𝑄 ∪ {𝑐 (𝑥 ′) + 𝑔(𝑥 ′) + X(𝑥 ′), 𝑥 ′}
14: return Failure ⊲ Return Failure if no valid expression is found

Search: the search is shown in Algorithm 1. The algorithm keeps a queue of expressions in a queue,
which you can consider to be the frontier of the search. At each iteration, it selects the expressions
with the lowest total score 𝑓 from the queue. If the expression is a complete expression, i.e., it
contains only terminal symbols from the grammar, we then send this to the validation procedure
described in Section 6. If the expression is a partial expression, the leftmost non-terminal of the
expression is expanded according to all applicable production rules in the grammar, creating a
new template for each production rule. These new expressions are all added to the queue and the
process is repeated.

We set a depth limit of 6, and if any expression exceeds this depth, it is discarded. We calculate
depth as the depth of the maximum child in the abstract syntax tree, excluding index expressions,
e.g., b(i) and c(i,j) are both expressions of depth 1, and b(i) + c(i,j) is an expression of
depth 2.

5.2 Bottom-Up Weighted A
∗

The algorithm presented in the previous section takes a top-down approach to enumerating through
the search space. This has advantages over bottom-up search, namely that it is known to find longer
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programs faster than bottom-up search, which is biased towards shorter programs. Nevertheless,
recent work has shown that guided bottom-up search can produce promising results [3]. To that
end, we develop a new A∗ inspired bottom-up search algorithm, which we term bottom-up A∗ .
The bottom-up search, shown in Algorithm 2 constructs expressions incrementally by starting
with basic tensors and systematically combining them using operators, following a probabilistic
context-free grammar. Again, the algorithm maintains a queue of expressions, and uses the same
combination of cost, estimated cost to reach a goal state and the penalty function to determine
which expression to expand first.

One key difference in the bottom-up search is the way we generate the template grammar. For
the bottom-up search where the production rules only permit extending an expression by adding
an operator and a new tensor to the end, effectively forcing the algorithm to enumerate programs
shortest first. The grammar generator, given a predicted dimension list 𝐿, and a function 𝑖 (T )
which calculates the number of unique indices in T , is shown below:
1 PROGRAM ::= TENSOR1 "=" EXPR

2 EXPR ::= TENSOR2 TAIL1

3 TAIL1 ::= 𝜀 | [ |𝐿 | > 2] OP TENSOR3 TAIL2

4 TAIL2 ::= 𝜀 | [ |𝐿 | > 3] OP TENSOR4 TAIL3

. . .

5 OP ::= "+" | "−" | "∗" | "/"
6 [𝐿[1] = 0]TENSOR1 ::= "a"

7 [𝐿[1] = 1]TENSOR1 ::= "a(i)"

8 [𝐿[1] = 2]TENSOR1 ::= "a(i,j)"

9 [𝐿[2] = 0]TENSOR2 ::= "b" | "Const"

10 [𝐿[2] = 1]TENSOR2 ::= "b(i)" | [𝑖 (𝑃) > 1]"b(j)" | [𝑖 (𝑃) > 2]"b(k)"
11 [𝐿[2] = 2]TENSOR2 ::= "b(i,j)" | "b(i,j)" | "b(j,i)" |

[𝑖 (𝑃) > 2]"b(i,k)" | . . .
12 [𝐿[3] = 0]TENSOR3 ::= "c" | "Const"

13 [𝐿[3] = 1]TENSOR3 ::= "c(i)" | [𝑖 (𝑃) > 1]"c(j)" | [𝑖 (𝑃) > 2]"c(k)" | . . .
14 . . .

An example of generated grammar is shown in Figure 7. Weights and probabilities over the
grammar are then calculated as described in Section 4.3.

1 PROGRAM ::= TENSOR1 "=" EXPR

2 TENSOR1 ::= "a"

3 EXPR ::= 1DTENSOR TAIL1

4 TAIL1 ::= 𝜀 | OP 2DTENSOR TAIL2

5 TAIL2 ::= 𝜀 | OP 1DTENSOR

6 2DTENSOR ::= "c(i, j)" | "c(j, i)" | "c(i, k)" | . . .

7 1DTENSOR ::= "b(i)" | "d(k)"

Fig. 7. An example generated template grammar, for the dimension list [0, 1, 2, 1], with a maximum of 3
unique indices appearing in the candidate LLM solutions. The rules for each tensor index expression include

all possible permutations of indices. The symbol 𝜀 denotes the empty string.

The search algorithm maintains a queue of partial programs, as with the top-down search,
which is initialized with the start symbol from the grammar. At each iteration, the program with
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Algorithm 2 Bottom-Up Enumerator
1: procedure Enumerate(𝑝𝐶𝐹𝐺𝜏 , 𝐿)
2: 𝑄 ← {(0, 𝑝𝐶𝐹𝐺𝜏 .𝑆)} ⊲ Priority queue initialized with start node
3: while 𝑄 ≠ ∅ do
4: (𝑓 , 𝑥) ← 𝑄.𝑝𝑜𝑝 () ⊲ Remove template with minimal 𝑓
5: if |𝑡𝑒𝑛𝑠𝑜𝑟𝑠 (𝑥) | = |𝐿 | then ⊲ If number of tensors in 𝑥 is the predicted number
6: if 𝑥 ∉ Σ∗ then
7: 𝑥 ← RemoveTail(𝑥) ⊲ Remove any tail nonterminal symbol
8: 𝑆 ← Validate(𝑥) ⊲ Try to instantiate 𝑥
9: if 𝑆 ≠ ⊥ then

10: if Verify(𝑥 .{𝑆}) then
11: return 𝑥 .{𝑆} ⊲ Return instantiated template
12: for 𝑥 ′. s.t. (𝑥 𝑟−→ 𝑥 ′ ∧ 𝑟 ∈ 𝑝𝐶𝐹𝐺𝜏 .𝑅) do ⊲ Iterate over all possible expansions of 𝑥
13: 𝑄 ← 𝑄 ∪ {𝑐 (𝑥 ′) + 𝑔(𝑥 ′) + X(𝑥 ′), 𝑥 ′}
14: return Failure ⊲ Return Failure if no valid expression is found

the minimum cost function, as before, is popped from the queue, expanded, and all the resulting
programs are added to the queue.

The total cost function 𝑓 (𝑥) for each partial expression 𝑥 , is again defined as: 𝑓 (𝑥) = 𝑐 (𝑥) +𝑔(𝑥) +
X(𝑥), where 𝑐 (𝑥) is calculated as before. In the bottom-up search, we use a simplified estimate of
the cost to complete the program, 𝑔(𝑥), which is defined as:

𝑔(𝑥) =
|𝐿 |∑︁
𝑖=𝑘

𝑚(𝐿[𝑖 + 1]),

where 𝑘 is the current number of tensors in 𝑥 , 𝐿 is the predicted dimension list, and𝑚(𝑑) is the
minimal cost to add a tensor of dimension 𝑑 . The minimal cost𝑚(𝑑) is computed as follows, where
Tensors(𝑑) is the list of tensors in the grammar of dimension 𝑑 , and P[𝑡] is the maximum probability
of any production rule in the grammar which adds the tensor of dimension 𝑑 :

𝑚(𝑑) = − log2
(

max
𝑡 ∈Tensors(𝑑 )

P[𝑡]
)
.

The penalty function is calculated as before, but with the criteria {𝑏1, 𝑏2} ∈ 𝐵 defined as:
• X𝑏1 (𝑥) = 100, where 𝑏1 is violated if the tensor symbols in 𝑥 are not in alphabetical order by
order of first appearance.
• X𝑏2 (𝑥) = ∞, where 𝑏2 is violated if 𝑥 contains at least as many tensors as predicted by the
dimension list, and it uses fewer than half the operations available in the grammar, and 0
otherwise.

The bottom-up search uses fewer penalty criteria than the top-down search because the construction
of the grammar encapsulates a number of these criteria already (for instance, the tensors are
enumerated by predicted dimension list order).
The main difference between the top-down and the bottom-up search is that the bottom-up

grammar is generated in a way that, at each intermediate step, a complete program can be inferred
from the partial program and checked against the specification. Every time an expression is
dequeued from the queue, if the expression contains a tail nonterminal symbol, e.g., TAIL1, TAIL1;
we can remove the tail nonterminal symbol to give a complete template (i.e., a template that contains
no non-terminal symbols). We can then return this template to the template validator. If it fails
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validation, we will re-append the nonterminal symbol to the end of the expression and generate
new expressions by expanding the non-terminal using all applicable production rules. The new
expressions are added into the queue.

6 Validation

Once the synthesizer produces a complete template 𝜏 , we wish to check whether it can generate
a program 𝑝𝑡 that satisfies the requirement ∀®𝑥 .𝑝𝑠 ( ®𝑥) = 𝑝𝑡 ( ®𝑥). Since checking this universally
quantified formula is expensive, we first generate a set of tests in the form of input-output examples.
This set of examples ⟨𝐼 ,𝑂⟩ is a list of input-output pairs where 𝐼 = ⟨𝑥1 ↦→ 𝑣1, ..., 𝑥𝑛 ↦→ 𝑣𝑛⟩ is a map
that binds the 𝜏 input arguments ®𝑥 = (𝑥1, ..., 𝑥𝑛) to concrete values (𝑣1, ...𝑣𝑛) randomly generated
and 𝑂 = (𝑜1, ..., 𝑜𝑛) is the corresponding output produced when we execute 𝑝𝑠 on the elements
from 𝐼 .
The TACO templates generated during the synthesis phase contain symbolic placeholders for

tensors and constants. To validate a candidate 𝜏 we build a set 𝑆 = (𝑠1, ..., 𝑠𝑚) of substitutions
𝑠 ↦→ 𝑥 that map the symbolic symbols 𝑠 in 𝑡𝑎𝑢 to input arguments 𝑥 . We iterate through all possible
permutations of 𝑆 , where tensor symbols are mapped to concrete tensor inputs, and constants are
mapped to a set of constants 𝐶 = (𝑐1, ..., 𝑐𝑚) containing the constant values present in the source
code of 𝑝𝑠 . We can then generate a concrete program 𝑝𝑡 = 𝜏 .{𝑆}, and execute 𝑝𝑡 on the input-output
examples in ⟨𝐼 ,𝑂⟩. If any instantiated concrete program satisfies all the input-output examples, we
return this to the next stage of verification. We use 𝑆 to assign concrete values to TACO symbols
and run 𝑃𝑇 to check its output. When building 𝑆 , we rule out invalid substitutions based on the
type of arguments and TACO symbols. More specifically, we discard substitutions that try to bind
tensor symbols with dimension > 1 to scalars and vice versa.
If the validator succeeds, it returns the valid substitution 𝑆 , if not it returns ⊥ to indicate there

was no valid substitution.
We explore all possible valid substitutions until we find a substitution 𝑠∗ that satisfies 𝜙 . This

validation process returns a tuple ⟨𝑃𝑇 , 𝑠∗⟩ that is given as input to the verification phase.

𝑆1 : ⟨b ↦→ Mat1, c ↦→ Mat1⟩
𝑆2 : ⟨b ↦→ Mat2, c ↦→ Result⟩
𝑆3 : ⟨b ↦→ Mat1, c ↦→ N⟩
𝑆4 : ⟨b ↦→ N, c ↦→ Mat1⟩
𝑆5 : ⟨b ↦→ Mat1, c ↦→ Mat2⟩
𝑆6 : ⟨b ↦→ Mat2, c ↦→ N⟩

.

.

.

𝑆𝑚 : ⟨b ↦→ Result, c ↦→ Mat2⟩

→

𝑆1 : ⟨b ↦→ Mat1, c ↦→ Mat1⟩
𝑆2 : ⟨b ↦→ Mat2, c ↦→ Result⟩
𝑆5 : ⟨b ↦→ Mat1, c ↦→ Mat2⟩

.

.

.

𝑆𝑚 : ⟨b ↦→ Result, c ↦→ Mat2⟩

→ 𝑆5 : ⟨b ↦→ Mat1, c ↦→ Mat2⟩

Fig. 8. A set of possible substitutions for the TACO program a(i) = b(i,j) ∗ c(j) and the inputs from

the legacy program in Figure 2. We discard invalid substitutions and try the valid ones until we find one that

satisfies the specification.

Example 6.1. Figure 8 shows a subset of the substitutions set 𝑆 given the program in Figure 2 and
the TACO candidate 𝑃𝑇 produced by the synthesizer, a(i) = b(i,j) * c(j). Each substitution
binds a symbol in the right-hand side of 𝑃𝑇 , i.e., b and c to one of the inputs of function. The
substitutions with a mark next to it are invalid, since they contain unsound bindings. For
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example, substitution 𝑆3 binds c, a 1-dimensional tensor to 𝑁 , which is a scalar. Such substitutions
are discarded and the valid ones are tested to run the program until we find one in which 𝑃𝑇 satisfies
the specification. In this example, the correct substitution is 𝑆5, which binds b and c to arguments
Mat1 and Mat2 respectively.

7 Verifier

We verify the correctness of a synthesized TACO program using bounded model checking. We
compile both the original C and the TACO program to a common language within the MLIR
compiler infrastructure [20]. Given a TACO program𝑇 and substitution 𝑆 returned by the validator,
we create NumPy code based on the indexing expressions of 𝑇 and replace its variables for the
concrete values specified in 𝑠∗. If the model checker fails to verify equivalence with the tuple ⟨𝑇, 𝑠∗⟩,
we return to the validation step and keep exploring different substitutions until we find one that
satisfies the specification and passes verification. We then use the JAX compiler [6] to lower the
NumPy code to MLIR.

From the MLIR files, we automatically generate C programs that create non-deterministic inputs,
execute the original C and TACO code on copies of those inputs, and assert that the outputs are
identical. We give this C program as input to CBMC [18], a bounded model checker for C, that
verifies said assertion holds for all possible inputs up to a certain bound.

Floating-point equivalence is both challenging to verify and, in many cases, undesirable. For
instance, many compiler optimizations simply do not preserve floating-point optimizations, in
order to achieve runtime speed-ups. For this reason, we extend CBMC to support rational datatypes,
and verify equivalence using rational datatypes.

8 Evaluation

To evaluate STAGG and its various components, we compare its performance against several
established techniques on a diverse suite of queries. The query set includes 10 artificial examples
and 67 real-world problems (61 derived from codebases reported in the literature [25] and 6 from
the C++ based inference code of Llama [24].)

STAGG is implemented using an extended version of CBMC 6.3.1 with cvc5 version 1.0.5 as the
underlying SMT solver. To generate initial candidate solutions, we use GPT-4 with the temperature
set to 1.0. A timeout of 60 minutes is applied to each query. All experiments are conducted on a
system equipped with an 11th Gen Intel® Core™ i5-1135G7 processor, 16 GiB of RAM, and running
Ubuntu® 22.04.5 LTS. Additional configuration details, including grammar refinements and penalty
modifications, are provided in the subsequent sections.

We compare the following approaches: (STAGG 𝑇𝐷 ) our approach, using the top-down A∗ search
described in Section 5.1; (STAGG 𝐵𝑈 ) our approach, using the bottom-up search described in
Section 5.2; (C2TACO) An enumerative synthesis tool for lifting C to TACO code [25]. We compare
to C2TACO both with and without the domain-specific heuristics; (Tenspiler) An enumerative
synthesis tool based on the verified lifting framework [35]; (LLM only) A baseline approach that
employs a large language model (GPT-4) to directly generate candidate solutions without additional
heuristic-driven refinement or search. In addition, we perform ablation studies to evaluate the
contribution of several components of STAGG. Namely, the grammar refinement; the probabilities
of the grammar; and the penalty functions.

We aim to answer the following research questions:

RQ1: How does the performance of STAGG compare to the state-of-the-art enumerative
synthesis tools?
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RQ2: How does the choice of top-down or bottom-up A∗ search contribute to the performance
of STAGG?

RQ3: How much do the penalty functions contribute to the performance of STAGG?
RQ4: How much does the grammar refinement contribute to the performance of STAGG?
RQ5: Howmuch do the probabilities on the grammar contribute to the performance of STAGG?
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Fig. 9. Cactus plot showing the number of benchmarks solved (𝑥-axis) vs. time (𝑦-axis, logarithmic) on the 67
real-world benchmarks. Each line corresponds to a different synthesizer, and the point at which each line

indicates how many benchmarks the synthesizer solved before the time.

RQ1: Comparison of performance of STAGG to the state-of-the-art solvers: Figure 9 depicts the
cumulative time each method takes over the 67 real-world benchmarks, and Figure 10 shows
the success rate of different techniques. We compare STAGG to C2TACO on the full set of 77
benchmarks in Table 1. STAGG𝑇𝐷 solves 76 benchmarks, compared to C2TACO which solves 67.
STAGG𝑇𝐷 solves all the benchmarks that C2TACO can solve, with an average solving time of
3.19𝑠 , compared to C2TACO’s 21.15𝑠 . STAGG𝐵𝑈 solves 73 benchmarks, and solves 66/67 of the
benchmarks that C2TACO solves, with an average solving time of 2.11𝑠 on the mutually solved
benchmarks. C2TACO without the domain heuristics enabled is significantly slower.

We are only able to run Tenspiler on the 67 real-world benchmarks, where it solves 52. STAGG𝑇𝐷

solves all 52 benchmarks that Tenspiler can solve, with an average time of 3.45𝑠 compared to
Tenspiler’s average time of 4.56𝑠 . STAGG𝐵𝑈 solves only 50/52 of the benchmarks that Tenspiler can
solve, but with an average time of 2.03𝑠 . This comprehensively answers RQ1: STAGG outperforms
the state-of-the-art solvers, both in terms of coverage and speed.

RQ2: Performance Comparison of Top-Down vs Bottom-Up Search. Our results show that, while
STAGG𝑇𝐷 solves more benchmarks than STAGG𝐵𝑈 , STAGG𝐵𝑈 is faster on commonly solved
benchmarks (for queries solved by both, STAGG𝐵𝑈 achieves a lower average solving time (98.81
seconds) compared to STAGG𝑇𝐷 (108.83 seconds)), and it enumerates fewer candidates. It has one
big disadvantage though, which is that it can only expand expressions by appending to the previous
expression, rather than by expanding nodes on the left-hand side of the AST. In particular, this
means it cannot solve benchmarks that require expressions with more balanced Abstract Syntax
Trees or benchmarks that contain parentheses.
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Fig. 10. Success rates of different approaches on the set of 67 real-world benchmarks.

Table 1. Comparison of benchmark-solving performance across different methods: The table reports the

number of benchmarks solved (#), average solving time (time in seconds), and attempts across various

benchmarks. The benchmarks are categorized into real-world benchmarks (67 in total), real-world + artificial

benchmarks (77 in total), benchmarks solved by C2TACO, and benchmarks solved by Tenspiler. STAGG
𝑇𝐷

and STAGG
𝐵𝑈

demonstrate superior solving capabilities, solving more benchmarks overall compared to

C2TACO and Tenspiler, with STAGG
𝐵𝑈

achieving the fastest solving times for benchmarks solvable by

C2TACO and Tenspiler. The results highlight the efficacy of STAGG over existing methods.

Real-World
(67)

Real-World + Artificial
(77)

Solved
by C2TACO

Solved
by Tenspiler

Methods # time # time attempts # time # time
STAGG𝑇𝐷 66 121.88 76 106.13 44.55 67 3.19 52 3.45
STAGG𝐵𝑈 63 113.86 73 98.81 35.62 66 2.11 50 2.03
LLM 24 2.61 34 2.59 1.62 31 2.57 20 2.72
C2TACO 59 22.57 67 21.15 18.45 67 21.15 50 23.69
C2TACO.NoHeuristics 59 43.08 67 49.41 48.81 67 49.41 50 43.76
Tenspiler 52 4.56 52 4.56
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Fig. 11. Impact of different grammar configurations in STAGG on success rates across all 77 benchmarks.

RQ3: Contribution of the penalty functions. Table 2 shows the decline in performance for both
STAGG 𝑇𝐷 and STAGG 𝐵𝑈 approaches when individual penalty rules are removed. As each penalty
rule is dropped, the number of queries solved decreases, highlighting the importance of these rules
in achieving high query-solving efficiency.
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Table 2. Impact of penalty rules on performance over 77 benchmarks (real-world + artificial). The table

compares the number of benchmarks solved (#), the percentage of benchmarks solved (%), and the average

solving time (time in seconds) for various configurations of STAGG. Removing penalty rules (e.g., Drop(A),

Drop(B)) reduces the number of solved benchmarks and influences solving times. While STAGG
𝑇𝐷

and

STAGG
𝐵𝑈

achieve high solving rates with the full penalty rules, dropping specific penalties often results in

faster solving times but at the cost of reduced solving capability, as it failed solving complex benchmarks.

Real-World + Artificial (77)
Methods # % time
STAGG𝑇𝐷 76 98.70% 106.13
STAGG𝑇𝐷 .Drop(A) 71 92.21% 7.21
STAGG𝑇𝐷 .Drop(a1) 72 93.51% 79.24
STAGG𝑇𝐷 .Drop(a2) 75 97.40% 91.66
STAGG𝑇𝐷 .Drop(a3) 72 93.51% 21.01
STAGG𝑇𝐷 .Drop(a4) 75 97.40% 90.58
STAGG𝑇𝐷 .Drop(a5) 75 97.40% 83.34
STAGG𝐵𝑈 73 94.81% 98.81
STAGG𝐵𝑈 .Drop(B) 70 90.91% 68.18
STAGG𝐵𝑈 .Drop(b1) 71 92.21% 48.95
STAGG𝐵𝑈 .Drop(b2) 70 90.91% 68.75

Table 3. Performance comparison of different methods and grammar configurations over 77 benchmarks

(real-world + artificial). The table shows the number of benchmarks solved (#), the percentage of benchmarks

solved (%), the average solving time (time in seconds), and the number of synthesis attempts. STAGG
𝑇𝐷

and

STAGG
𝐵𝑈

outperform C2TACO variants in solving more benchmarks. Variations of STAGG demonstrate

the impact of grammar refinement, where dropping penalty rules (Drop(A), Drop(B)) or using alternative

configurations (e.g., EqualProbability, LLMGrammar) affect the solving capability, time, and attempts.

Real-World + Artificial (77)
Methods # % time attempts
STAGG𝑇𝐷 76 98.70% 106.13 44.55
STAGG𝑇𝐷 .Drop(A) 71 92.21% 7.21 13.65
STAGG𝑇𝐷 .EqualProbability 73 94.81% 28.14 37.27
STAGG𝑇𝐷 .LLMGrammar 52 67.53% 3.77 5.25
STAGG𝑇𝐷 .FullGrammar 69 89.61% 91.15 874.29
STAGG𝐵𝑈 73 94.81% 98.81 35.62
STAGG𝐵𝑈 .Drop(B) 70 90.91% 68.18 10.07
STAGG𝐵𝑈 .EqualProbability 74 96.10% 180.31 62.78
STAGG𝐵𝑈 .LLMGrammar 52 67.53% 2.74 2.60
STAGG𝐵𝑈 .FullGrammar 68 88.31% 96.57 259.35
LLM 34 44.16% 2.59 1.62
C2TACO 67 87.01% 21.15 18.45
C2TACO.NoHeuristics 67 87.01% 49.41 48.81

RQ4 and RQ5: Contribution of grammar refinement and probabilities. Figure 11, 12 and Table 3
show the performance of difference configurations of STAGG: EqualProbability uses the refined
grammar but replaces all probabilities in the generated pCFG with equal probabilities; FullGrammar
uses the full TACO grammar in Figure 5 with equal probabilities; LLMGrammar uses the full TACO

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 227. Publication date: June 2025.



227:20 Y. Li, J. W. S. Magalhães, A. Brauckmann, M. F. P. O’Boyle, E. Polgreen

0 10 20 30 40 50 60 70
Number of Benchmarks Solved

0.1

1

10

100

1000

Ti
m

e 
(s

)
STAGGTD

STAGGTD.EqualProbability
STAGGTD.LLMGrammar
STAGGTD.FullGrammar
STAGGBU

STAGGBU.EqualProbability
STAGGBU.LLMGrammar
STAGGBU.FullGrammar

Fig. 12. The performance of difference configurations of STAGG on all 77 benchmarks.

grammar in Figure 5 with probabilities learned from the LLM responses. All these configurations use
the penalty functions. Thus, in order to compare the contribution of the grammar refinement, we
can compare the performance of LLMGrammar, which uses learned probabilities but no refinement,
to STAGG. Dropping the refinement, here, results in us solving 31% fewer benchmarks. If we
compare FullGrammar to EqualProbablity, we can see that grammar refinement has less impact
when learned probabilities are not used, but still results in a significant number of benchmarks
being dropped.
In order to compare the contribution of the probabilities, we can compare the performance

of EqualProbability to STAGG, where we note that using equal probabilities on the refined
grammar results in an increase in the number of benchmarks solved for STAGG𝑇𝐷 , and an increase
in solving speed for STAGG𝐵𝑈 , although neither is as impactful as the grammar refinement. In fact,
the comparison between FullGrammar and LLMGrammar demonstrates that learned probabilities
can have a negative impact if they are used in a grammar that is not general enough. Thus, our
answer to RQ4 and RQ5 is that grammar refinement in combination with probabilities has a bigger
impact on performance than either component part, but the refinement alone is more powerful
than the probabilities alone.

9 Related Work

9.1 LLM-Guided Synthesis

One of the strategies to aid the search process in the program synthesis tool is using a neural
network to guide the search. Seminal work by Balog et al. [2] synthesized array manipulation
programs from I/O examples using a feedforward neural network (FNN) to build a probabilistic
distribution over the target language. During the search, the synthesis algorithm expands partial
programs based on the probabilities predicted by the FNN for the given I/O specification. Neural-
guided synthesis has also been applied to solve string manipulation tasks by [31, 38], inductive logic
programming [38], dataframe [4] and tensor [28, 37] processing, and code transpilation [26] using
distinct models. SketchAdapt [29] uses a model to produce a program sketch as a starting point and
completes said sketch through symbolic enumeration. Closer to our technique is Euphony [22],
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a system that learns a probabilistic high-order grammar model from examples and searches for
programs using A∗ . All those techniques require the model to be trained on domain-specific data,
which can be costly and an impediment for such techniques to be expanded to other tasks.

Pre-trained Large Language Models (LLMs) have been used to guide enumerative synthesis in
class program synthesis tasks: Li et al. [23] developed two LLM-guided synthesis approaches to
generate programs from logical formulas. The first method infers a probabilistic grammar using an
LLM and enumerates said grammar using top-down A∗ search; while the second queries the LLM
to complete incorrect candidates produced by the enumeration phase. HYSYNTH [3] also derives
a probabilistic grammar from LLM responses, but it uses bottom-up enumeration. LLMs are also
used directly for verified lifting in LLMLift [5], where lifting of programs is performed leveraging
GPT-4 [33] to guess candidate solutions and loop invariants to prove equivalence, with feedback
being given to the LLM to correct any mistakes. This approach is remarkably effective but relies
on the LLM being able to fix its own mistakes based on the feedback, which may not be trivial in
complex domains [32].

9.2 Tensor Code Lifting

Driven by enormous advances in Machine Learning, there has been increasing interest in lifting
tensor code to optimized targets. C2TACO [25] is a synthesis tool that generates TACO code from
I/O examples. It implements a bottom-up enumerative algorithm, and it uses code analysis to restrict
the search space of programs. mlirSynth [7] has a similar approach, but it lifts tensor programs
across different MLIR dialects. In both methods, correctness is asserted using only I/O testing while
STAGG performs bounded model checking to verify that the lifted programs are equivalent to
their original counterpart. A different synthesis method was used in Tenspiler [35], which employs
symbolic synthesis to generate programs in six different tensor DSLs. Tenspiler builds verification
conditions and loop invariants to prove that the lifted program is equivalent to the original one.
Unlike STAGG, which learns how to explore the search space in a fully automated way, all those
techniques require hard-coded heuristics to make the search space tractable.
Another approach to lift code is API matching, in which source code is replaced by optimized

library routines to improve performance. Examples in the tensor domain include KernelFaRer [9],
which focuses on general matrix multiplication (GEMM), and ATC [27], which targets both GEMM
and convolutions. SpEQ [19] introduces a method of translating sparse linear algebra codes to
optimized targets using equality saturation applied to LLVM IR. However, these approaches are
often tailored to specific APIs and are not portable. STAGG leverages the great learning capabilities
of Large Language Models to infer the search space, which makes our technique extensible to
different targets and to more unrestricted back-ends such as DSLs.

10 Conclusions

This paper presented STAGG, a novel approach that combines LLMs and program synthesis to lift
legacy tensor code to DSLs. We use a set of LLM responses to infer a probabilistic context-free
grammar that drives an enumerative search over the space of possible solutions. Our technique
successfully lifts 99% of a large suite of benchmarks with an average lifting time of 3.19 seconds,
outperforming existing state-of-the-art lifters in terms of coverage and synthesis time. Additionally,
STAGG is able to automatically learn a search space, and it does not rely on any pre-defined
heuristics. Future work will focus on expanding our technique to application domains other than
tensor computation.
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