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Abstract
Linear algebra libraries and tensor domain-specific languages
are able to deliver high performance for modern scientific
and machine learning workloads. While there has been re-
cent work in automatically translating legacy software to use
these libraries/DSLs using pattern matching and program
lifting, this has been largely limited to dense linear algebra.

This paper tackles the more challenging problem of port-
ing legacy sparse linear algebra code to libraries and DSLs.
It exploits the power of large language models to predict
a sketch of the solution and then uses type-based program
synthesis to search the space of possible code to target pa-
rameter bindings. We implement this in a tool named SLEB
(Sparse LiftEr with Binding) and evaluate it on a large set of
benchmarks and real-world datasets, comparing against two
state-of-the-art compiler techniques, LiLAC and SpEQ; and
GPT 4.o. Overall, we lift 94% of programs compared to 11%,
17%, and 48% for LiLAC, SpEQ, and GPT 4.o respectively.
This delivers a geomean speedup of 2.6x and 7.2x on a CPU
and GPU platform, respectively.

CCS Concepts: • Software and its engineering→ Retar-
getable compilers.

Keywords: Sparse, Program Lifting, Synthesis, TACO, Ten-
sor Algebra
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1 Introduction
Matrix-based linear algebra has been a key component of
scientific applications for decades. The recent increase in
machine learning workloads has seen significant interest
in higher-dimensional linear algebra based on tensor con-
tractions [21]. This, in turn, has led to the development of
a number of accelerator libraries and high-level program-
ming languages, which exploit domain knowledge in order
to generate highly optimized code [18, 43, 46, 47].
Although libraries and DSLs can deliver potentially sig-

nificant performance, existing programs, however, have to
be manually rewritten and ported to them. This manual ef-
fort remains a major barrier to their wider adoption. This
issue has led to significant interest in automatically porting
legacy code via a variety of techniques, including matching
for matrix libraries [17] and lifting to tensor DSLs [38, 39].

Matching and Lifting. Matching based schemes search
the source program for code patterns that correspond to the
meaning of a specific API or library. The pattern is frequently
described as a code fragment at the compiler AST or IR
level [17, 24], though other approaches, including program
classification and input-output behavior, are also studied
[45]. The meaning of the library is normally provided as an
unoptimized code implementation.
In contrast, lifting approaches aim to express low-level

source code in a higher-level DSL [37, 38]. They frequently
use program synthesis to search a target space of programs
and show equivalence between the source program and the
candidate lifted [36]. Searching the exponential program
space efficiently and proving equivalence are the key chal-
lenges of these schemes.

1.1 Sparse Tensor Algebra
While there has been much work in matching and lifting
legacy dense linear algebra code, there has been, however,
less progress in tackling sparse code. The reason is that an-
alyzing legacy sparse computation is difficult [22]. Unlike
dense operations. There are many different data storage for-
mats employed [44] and idiosyncratic ways for programmers
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Figure 1. Example of sparse code lifting. The original program spmm 1○ is replaced by the lifted program 4○ which consists
of two calls to the MKL library with parameters originating as variables in the original program. The signature for these
calls is shown in 2○ and partially completed with known values 3○. SLEB determines that the unknown values or holes ??
correspond to the variables encircled in dotted blue lines from the original program. Orange text shows the type chain for
relevant variables.

to code sparse linear algebra. Furthermore, while tensor DSLs
are able to express and support a wide range of higher-order
algebraic operations [7], they are still under development
and in some cases may be outperformed by sparse matrix
libraries. Thus, the best lifting target for an application is
in flux. The complexity of source code and a moving target
mean that the automatic porting of sparse code remains an
open problem.

Prior Work. There has been some limited work in the
area, focusing solely on matching sparse matrix-vector com-
putation to library APIs. In [23], constraint-based LLVM IR
pattern matching is used to detect code and replace it with
optimized calls to an accelerator library. In [28], a data depen-
dence graph is used as a pattern and stuttered bisimulation is
employed to show equivalence. LiLAC assumes just one data
format (CSR) and SpEQ supports only CSR and CSC, and
neither is able to manage general sparse matrix operations
or any higher-order tensor contractions. Each pattern to

match has to be provided by the user plus a reference imple-
mentation. Furthermore, they are brittle in the presence of
idiosyncratic code and only tackle fixed library APIs rather
than open-ended DSLs. Ideally, we would like an approach
that can handle general sparse computation with arbitrary
data formats and target both libraries and DSLs, choosing
which is ever the most appropriate.

1.2 Our Approach
This paper develops a new technique to lift sparse legacy
code to both libraries and DSLs using a large language model
(LLM) and program synthesis. It avoids the problem of hal-
lucination by asking the LLM for a high-level classification
of data format and tensor operation rather than using it for
code generation. Given the classification, we generate an
API or DSL program sketch with gaps or holes that source
code variables must fill. Smart type-based binding is then
used to match source code variables to library or DSL pa-
rameters, dramatically reducing the synthesis search space.
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Automatic input-output testing is then used to validate the
translation. We implement this methodology in a tool named
SLEB, which is publicly available.1

We perform an extensive evaluation of our approach on 31
benchmarks and 14 real-world data sets selected from a vari-
ety of external sources. We consider 3 different targets: two
APIs (Intel MKL [2] for CPU, cuSPARSE [1] for GPU); and
a DSL (TACO [26] ) for high-order tensor algebra. We com-
pare our scheme against two different competitive compiler
approaches, LiLAC [25] and SpEQ [28], and a well-known
language model, GPT 4.o [6]. We evaluate each scheme in
terms of the number of programs lifted, correctness, and the
speedup obtained when executing the lifted programs on
CPU and GPU. We lift 93% of the benchmarks, are always
correct, and deliver a geomean speedup of 2.6x and 7.2x on
CPU and GPU platforms, respectively.

2 Motivation/Background
Our objective is to automatically synthesize sparse algebra
programs in a target high-level API or domain-specific lan-
guage (DSL), given a source legacy implementation. A sparse
implementation is characterized by two elements: (i) the op-
eration performed, such as sparse matrix multiplication or
sparse tensor addition, and (ii) the storage format of sparse
data, such as compressed sparse row (CSR). SLEB determines
both elements and generates correctly synthesized code.

2.1 Example
To illustrate our approach, Figure 1 presents a running ex-
ample of SLEB. The original source code in 1○ is sparse
matrix–matrix multiplication (SpMM) from the SpComm3D
framework [5], implemented in C++. SLEB correctly clas-
sifies this code as performing SpMM with data stored in
coordinate list (COO) format. Based on this prediction, SLEB
identifies the computation as an operation supported by the
Intel Math Kernel Library (MKL). Using the MKL library
requires first declaring a data format and then calling the
appropriate sparse matrix operation.
SLEB targets the MKL functions whose signatures are

shown in 2○. The first function mkl_sparse_d_create_coo
creates a sparsematrix in COO format storing double-precision
floating points. The second function mkl_sparse_d_mm per-
forms sparse dense matrix-matrix multiplication with the
same datatypes.

The COO format declaration is a function with 7 parame-
ters, while the actual operation is performed by a function
with 11 parameters. These function signatures are used to
form a sketch where SLEB fills in known parameters such
as desc = SPARSE_MATRIX_TYPE_GENERAL and leaves 11
unknown parameters as holes denoted by ?? in 3○.

1https://github.com/JWesleySM/sleb

2.1.1 Binding. Determining the correct parameters or bind-
ings is non-trivial. Every variable in the source code is a
potential candidate, which is made more complex in the
presence of hierarchical type declarations. In 1○, each of the
parameters passed to the original spmm function refers to
classes and structs declared elsewhere in the program, which
in turn refer to standard std C++ library components.
Given that there are 29 variables in the source code and

11 parameters in the function calls, naive enumeration of all
options would be combinatorially expensive. Instead, SLEB
uses type analysis and smart synthesis to reduce the number
of candidates from 1.2×1016 to 8 data sketch and 95 operation
sketch candidates.
The relevant source code variables are those highlighted

by blue dotted lines. We then wish to fill in the holes and
generate the correct code shown in 4○. SLEB is an automatic
technique to replace 1○with 4○which delivers a 5.2x speedup
improvement on a CPU and 11.6x on a GPU over the original
code.

.

3 Overview
Figure 2 provides a high level overview of SLEB. It combines
an LLMs program analysis and smart synthesis to generate
API or DSL code 𝐿 from an input program 𝑃 .

Classification. The first stage reads the source program
in and asks an LLM using a prompt to classify the source
code into a number of potential sparse operator classes; and
a number of potential different data formats. For those pro-
grams involving tensors, we also prompt for the number of
arguments and the dimensionality of the tensors.

From this information we create two types of sketch: data
storage and sparse operation. Both APIs andDSL require data
format declarations, so the data storage sketch is common to
both. For APIs, the operation sketch is a function call with
holes in as illustrated in Figure 1. For DSLs, the operation
sketch is a smaller grammar expressing the space of possible
matching programs.

Analysis. This second stage determines which source
code variables are potential candidates for later binding. The
type based analysis recursively examines all structured types
until it reaches base types: ints, floats. Doubles and arrays of
int, floats and doubles. These are all candidates for the next
stage data binding.

Data Binding. In the third stage candidate variables are
iteratively bound to the data sketch generated during classi-
fication and tested for validity. All successful candidates are
passed on to both the operation binding used for APIs and
to the IO testing stage.

Operator Binding. The fourth stage is either operator
binding for API calls or exploration for DSLs. In operator
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Figure 2. The overall pipeline of SLEB. A program P is classified by operator and data format from which a data and operator
sketches are generated. Program analysis is performed on P to determine candidate variables t match the holes in the generated
API or DSL sketch. Data binding finds the correct variables to complete the data sketch while operator binding completes the
API operator call. When the program is lifted to a DSL rather than an API, as small grammar is explored to find the correct
program. All of this is validated by IO testing before being available for subsequent verification

binding, all candidate variables that were bound during data
binding are removed from consideration for operator bind-
ing. The intuition behind this is that during data binding,
sparse variables are identified while operator binding is con-
cerned with dense types. Operation binding searches for
candidates to fit the operator sketch generated by classifica-
tion. It checks the validity of the binding by executing the
code on test examples in testing. If these all fail, the next
highest probability operator class is chosen for exploration
and the process is repeated.

DSL Exploration. For programs lifted to a DSL, the fourth
stage consists of exploration. Here, the grammar describing
the operator sketches supplied by the classification stage is
enumerated using bottom-up enumerative synthesis, guided
by predicted length and tensor dimension. These are then
evaluated and tested as in operator binding.

Testing. Once the final stage has confirmed that the lifted
program passes all IO tests it can be passed onto an external
verification tool such as [20] completing the process.

4 Technique
Given a fragment of low-level tensor manipulating code 𝑃 ,
which we assume to be manipulating sparse tensors, the aim
is to automatically lift 𝑃 to an equivalent expression in the

form of either high-performance library calls or expressions
in a domain-specific language for manipulating tensors, like
TACO. We break this down into two separate subtasks: first,
we identify the format of the sparse tensors used in the
original code; second, we identify the semantics of the source
code and choose a semantically equivalent high-performance
library call or, if no such library call exists, the equivalent
expressions in a high-performance DSL.
An overview of our approach is shown in Algorithm 1.

Lines 2-3 correspond to the classification and program anal-
ysis stages, From the LLM response, we build the data sketch
(line 4). The data binding phase, lines 5 to 7, validates that
bindings generated by the bind are in accordance with sec-
tion 4.3. The bind function is described in detail in Algorithm
2. In case the operation is supported by APIs, we proceed
to operation binding (lines 9-11). The loop at line 12 corre-
sponds to the final testing. In case we need to target a DSL,
we proceed to the exploration phase followed by testing, as
shown at lines 17-21.

4.1 Classification
The first step is to identify the storage format and the seman-
tic behavior of the input source code. We frame this task as
a classification problem and query an LLM to provide labels
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Algorithm 1: SLEB lifting algorithm. The subproce-
dures analyze and filter are described in Sections 4.2
and 4.4 respectively.
input : source computation kernel 𝑃 , set of tests 𝜙
output : lifted MKL/TACO program, or no solution

1 Algorithm lift(𝑃, 𝜙)
2 𝑓 𝑜𝑟𝑚𝑎𝑡,𝑂𝑝, 𝑁 , 𝑜𝑟𝑑𝑒𝑟𝑠 ← queryLLM (𝑃);
3 candidates← analyze(𝑃);
4 𝐷𝑆𝐾 ← sketch(𝑓 𝑜𝑟𝑚𝑎𝑡);
5 𝐷𝐵 ← bind (𝐷𝑆𝐾 , 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠);
6 for 𝑏 ∈ 𝐷𝐵 do
7 if validate(𝑏, 𝑃, 𝜙) then
8 if Op is MKL supported then
9 𝑂𝑝𝑆𝐾 ← sketch(𝑂𝑝);

10 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑂𝑝 ← filter (𝑏, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠);
11 𝑂𝑃𝐵 ← bind (𝑂𝑝𝑆𝐾 , 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑂𝑝 );
12 for 𝑜𝑝𝑏 ∈ 𝑂𝑃𝐵 do
13 𝐿 ← compile(𝑏, 𝑜𝑝𝑏);
14 if test (𝐿, 𝜙) then
15 return 𝐿

16 else if Op is TACO supported then
17 𝐸 ← genProgSpace(Op,N , orders);
18 for 𝑒 ∈ 𝐸 do
19 𝐿 ← compile(𝑏, 𝑒);
20 if test (𝐿, 𝜙) then
21 return 𝐿

22 return 𝑛𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

for the input program.We use GPT-4.o [6] as the LLM, giving
it the prompt below, followed by the source code of 𝑃 .

"The following code contains a sparse linear/tensor

algebra operation. You have two tasks: first, tell me

what is the sparse storage format being used, second,

tell me what operation is being performed. For the

format, choose among the following: [CSR, CSC, COO,

JDS]. For the operator, be extremely brief. For example,

if the code is computing a sparse matrix-vector product,

say just SpMV, if it is tensor-times-vector, say SpTTV,

and so on. If the operator takes as sparse input(s)

a high-order tensor (>2), tell me also the number of

tensors in the operation together with their respective

orders."

From the LLM answer, we extract the data label and the
operator label. In case it is a tensor operation, we also query
for the number of tensors in 𝑃 and their respective orders.
We support the following data formats: compressed sparse
column (CSC), compressed sparse row (CSR), coordinate list
(COO), and jagged diagonal storage (JDS). For operators, we
support the main sparse computations, from sparse-dense

Algorithm 2: Binding generation process for a given
sketch 𝑆𝐾 .

1 Procedure 𝑔𝑒𝑛𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑠 (𝑖, 𝐻,𝑉 ,B, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑆𝑒𝑒𝑛)
2 if 𝑖 = |𝐻 | then
3 𝑏 ← {ℎ ↦→ 𝑣 | (𝑣, ℎ) ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡};
4 if 𝑏 ∉ 𝑆𝑒𝑒𝑛 then
5 B ← B ∪ {𝑏};
6 𝑆𝑒𝑒𝑛 ← 𝑆𝑒𝑒𝑛 ∪ {𝑏};
7 return
8 ℎ ← 𝐻 [𝑖];
9 for 𝑣 ∈ 𝑉 do
10 if ⟨ℎ, 𝑣⟩ type-checks and obeys all rules then
11 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∪ ⟨ℎ, 𝑣⟩;
12 genBindings(i + 1,H ,V ,Bcurrent, Seen) ;
13 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 \ ⟨ℎ, 𝑣⟩;

14 Procedure 𝑏𝑖𝑛𝑑 (𝑆𝐾,V, 𝑆𝑒𝑒𝑛)
15 H ← holes(𝑆𝐾);
16 B ← ∅;
17 genBindings(0,H ,V,B, ∅, 𝑆𝑒𝑒𝑛);
18 return B;

and sparse-sparse matrix products to tensor element-wise
scaling and contraction operations.

Given a data label, we create a sketch to represent the API
call that creates the guessed format. We term this 𝐷𝑠𝑘 , or
the data sketch. We then analyze the operator label to detect
whether the sparse operation is supported by our target APIs.
If that is the case, we construct an operation sketch𝑂𝑝𝑠𝑘 , i.e.,
a high-level API call with holes for all the inputs; otherwise,
we use the number of inputs and orders to build a set of
short expressions in the TACO DSL and enumerate this set,
testing each expression.

4.2 Program Analysis
We perform static analysis on the abstract syntax tree (AST)
of the input program 𝑃 to identify candidate values that may
be bound to the holes in the sketches built in the classification
stage. This analysis yields a set of source-level variables that
can be used to instantiate the sketches.
Since both 𝐷𝑠𝑘 and 𝑂𝑝𝑠𝑘 are statically typed, we can fil-

ter candidates for binding based on their type in the source
code. We restrict ourselves to variables of integer types and
double-precision floating points, as these commonly repre-
sent matrix or tensor dimensions, coordinates, and numerical
values. We also consider pointers to these types as valid bind-
ing candidates.
In case a variable 𝑉 has a type 𝑇 which is composite

(structs, classes, etc) or derived (references, type redefini-
tions, etc), we recursively traverse the type definition tree
rooted at 𝑇 , inspecting subnodes and collecting the values
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that may type-check with sketch holes. For example, in Fig-
ure 1 1○, variable X cannot be directly bound to a sketch
hole. We can, however, determine that X.m, X.n, and X.data
type-check with sketch holes and keep those as candidates.
We perform the analysis in 3 stages. First, we scan the

input arguments of 𝑃 . If the lifting fails, the next iteration
will also consider the variables defined in the body of 𝑃
as candidates. Finally, we extend the analysis to consider
the variables in the body of functions called in 𝑃 . Because
sparse kernels often iterate over entire data structures in
loops, we also treat loop-bound variables as potential binding
candidates.

4.3 Data Binding
A key step to making lifting scalable is the data binding
process. During this phase, we complete 𝐷𝑠𝑘 by binding the
set of candidate values produced by program analysis to the
inputs of the API call in the data sketch.

A data sketch 𝐷𝑠𝑘 is defined as

𝐷𝑠𝑘 = ⟨𝑛𝑟𝑜𝑤𝑠 , 𝑛𝑐𝑜𝑙𝑠 , 𝑁𝑁𝑍, 𝑟𝑜𝑤𝑠𝑖𝑛𝑑𝑒𝑥 , 𝑐𝑜𝑙𝑠𝑖𝑛𝑑𝑒𝑥 , 𝑣𝑎𝑙𝑢𝑒𝑠⟩

where:
• 𝒏𝒓𝒐𝒘𝒔 and 𝒏𝒄𝒐𝒍𝒔 are integers denoting the number of
rows and columns of the sparse data structure. For higher-
order tensors, 𝐷𝑠𝑘 has a hole 𝒏 for each dimension.
• 𝑵𝑵𝒁 is an integer representing the number of non-zero
entries.
• 𝒓𝒐𝒘𝒔𝒊𝒏𝒅𝒆𝒙 and 𝒄𝒐𝒍𝒔𝒊𝒏𝒅𝒆𝒙 are integer arrays storing the
coordinates of non-zero entries. Again, there is one array
per dimension for high-order tensors.
• 𝒗𝒂𝒍𝒖𝒆𝒔 is a double-precision floating point array storing
the non-zero entries of the sparse data structure.

We perform binding using type-constrained enumeration
described in Algorithm 2.At each recursive step, it selects
the next hole and attempts to bind it to each candidate value
that satisfies the data validation constraints. When all the
holes are bounded SLEB stores the binding, checking against
a global set to prevent duplicates. This procedure returns all
the bindings to be validated with format-specific constraints.

We enumerate all possible combinations of variable bind-
ings and API call inputs, subject to the following constraints:

Type compatibility. Only combinations of variables whose
types match the expected input types of the API call are
considered.
Unique pointer binding. A pointer variable may be bound
to at most one placeholder (“hole”) in the sketch.
Naming constraint. If a hole in the sketch is bound to a
field accessed through a pointer (e.g., A->c), all other values
bound within the same sketch must either refer to the same
object (A) or to standalone variables. References to fields of
different objects (e.g., B->d) are not considered as candidates.

4.3.1 Data Validation. Given the sparse format 𝐹 and a
binding 𝐵⟨𝐻,𝑉 ⟩, we validate 𝐵 by loading the corresponding
values for 𝑉 from the test set and verifying that they satisfy
the storage-format constraints for 𝐹 . These constraints rep-
resent the semantics of each format and are used to discard
invalid bindings.

CSR (Compressed Sparse Row):
• 𝑁𝑁𝑍 is implicitly defined as the last entry of 𝑟𝑜𝑤𝑠𝑖𝑛𝑑𝑒𝑥 .
• 𝑟𝑜𝑤𝑠𝑖𝑛𝑑𝑒𝑥 must have either length 𝑛rows + 1 or there
are two rows index holes of length 𝑛𝑟𝑜𝑤𝑠 storing the
start and the end of each line.
• 𝑐𝑜𝑙𝑠𝑖𝑛𝑑𝑒𝑥 and 𝑣𝑎𝑙𝑢𝑒𝑠 must have length equal to 𝑁𝑁𝑍 .
• 𝑟𝑜𝑤𝑠𝑖𝑛𝑑𝑒𝑥 must bemonotonically non-decreasing, with
the first value being 0.

CSC (Compressed Sparse Column):
• 𝑁𝑁𝑍 is implicitly defined as the last entry of 𝑐𝑜𝑙𝑠𝑖𝑛𝑑𝑒𝑥 .
• 𝑐𝑜𝑙𝑠𝑖𝑛𝑑𝑒𝑥 must have either length 𝑛cols + 1 or there are
two rows index holes of length 𝑛𝑐𝑜𝑙𝑠 storing the start
and the end of each line.
• 𝑟𝑜𝑤𝑠𝑖𝑛𝑑𝑒𝑥 and 𝑣𝑎𝑙𝑢𝑒𝑠 must have length equal to 𝑁𝑁𝑍 .
• 𝑐𝑜𝑙𝑠𝑖𝑛𝑑𝑒𝑥 must be monotonically non-decreasing, with
the first value being 0.

COO (Coordinate List):
• Arrays 𝑟𝑜𝑤𝑠𝑖𝑛𝑑𝑒𝑥 , 𝑐𝑜𝑙𝑠𝑖𝑛𝑑𝑒𝑥 , and 𝑣𝑎𝑙𝑢𝑒𝑠 must have length
equals to 𝑁𝑁𝑍 .
• Indices in 𝑟𝑜𝑤𝑠𝑖𝑛𝑑𝑒𝑥 and 𝑐𝑜𝑙𝑠𝑖𝑛𝑑𝑒𝑥 must satisfy 0 ≤
𝑟𝑜𝑤𝑠𝑖𝑛𝑑𝑒𝑥 [𝑖] < 𝑛𝑟𝑜𝑤𝑠 and 0 ≤ 𝑐𝑜𝑙𝑠𝑖𝑛𝑑𝑒𝑥 [𝑖] < 𝑛𝑐𝑜𝑙𝑠 .

JDS (Jagged Diagonal Storage):
• The last value of the diagonal pointer array gives𝑁𝑁𝑍 ,
which need not be explicitly stored elsewhere.

We iteratively validate each completed 𝐷𝑠𝑘 until a valid
binding 𝐵𝑇 is found. We then proceed to complete the oper-
ation sketch or enumerate TACO programs using 𝐷𝑠𝑘 (𝐵𝑇 )
as the data creation API call.

4.4 Operation Binding
We complete 𝑂𝑃𝑠𝑘 again using type-constrained enumera-
tion. We restrict the bindings so that variables may only be
bound to the data or the operation sketch, not both. SLEB
has a filtering component that takes as input the set of values
produced by the analysis step and removes values 𝑣 ∈ 𝐵𝑇 .𝑉 .
This filtering produces a much smaller set of candidates for
filling holes in 𝑂𝑃𝑠𝑘 , making the enumeration scalable.

Parameter Inversion. Operation sketches have param-
eters, i.e., holes that can only assume a value 𝑣 ∈ 0, 1. For
the MKL operation sketches, those parameters are alpha
and beta, which can take values 0.0 or 1.0; and booleans
indicating whether the sparse input is transposed and the
storage layout of dense matrix inputs. Since there are only
two possibilities for each parameter, we do not attempt to
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bind variables for those holes, and instead simply enumerate
all the options.

4.5 DSL Exploration
Operations involving high-order sparse tensors are not well-
supported in sparse APIs. Therefore, we resort to domain-
specific languages to lift those types of programs. Unlike
an API call, DSLs have a less restricted nature. The same
operation might have multiple different equivalent TACO
expressions. For example, a tensor-times-vector operation
can be expressed in many ways depending on which dimen-
sion is contracted. Therefore, SLEB does not create a single
operation sketch and instead enumerates TACO programs.

We build a search space of TACO expressions parametrized
by the number of tensors and their orders as predicted by the
LLM. We then enumerate all the expressions in that space
using the data created by 𝐷𝑠𝑘 and 𝐵𝑇 . For each expression,
we invoke the TACO compiler to generate C code and run it
on the test set until we match the original program’s output
or exhaust the program space.

4.6 Testing
For each completed operation sketch, we test the combina-
tion of the completed 𝐷𝑠𝑘 and completed 𝑂𝑝𝑠𝑘 against 10
test cases. In each test, the dense input values are randomly
generated, while the sparse inputs (matrices or tensors) are
drawn from real-world datasets. Each candidate instantiation
is executed and compared against the output of the origi-
nal program. If output matches the original, we return the
completed sketches as a valid solution.
If all the possible completions of 𝑂𝑝𝑠𝑘 failed for a given

𝐷𝑠𝑘 , we return to enumerating other possible completions
for 𝐷𝑠𝑘 . When SLEB tries all possible completions of 𝐷𝑠𝑘 and
none of them pass the tests, it randomly chooses a new data
format and repeats the lifting process.

5 Experimental Setup
5.1 Benchmarks
We gathered a suite of 31 programs extracted from diverse
benchmark suites, applications, and software libraries, none
of which were developed by the authors. Our suite con-
tains implementations of 15 different sparse algebra opera-
tions: 14 sparse matrix-vector product (SpMV) taken from
CSparse [16], DOLFINx [10], GinkGO [9], Netlib [19], NAS
Parallel Benchmarks [32], Parboil [42], QuantLib [3], Sci-
Mark [4], and TACO-generated from SpEQ artifact [27]; 3
sparse matrix-matrix multiplication (SpMM) from SuperLU
[30], Sextans [41], and SpComm3D [5]; 2 sparse general
matrix-matrix multiplication (SpGEMM) from CSeg [8] and
also from GinkGO [9]; 1 sparse matrix addition (SpMADD)
from CSparse [16]; 1 sampled-dense-dense matrix multiplica-
tion (SDDMM) from SpComm3D [5]; 4 tensor element-wise
(TEW) (addition, subtraction, multiplication and division),

Table 1. Real-world matrices and higher-order tensors used
for performance experiments

Dataset Dimensions #NNZ Density

bcsstk17 10.9𝐾 × 10.9𝐾 428,650 4 × 10−3
pdb1HYS 36𝐾 × 36𝐾 4,344,765 3 × 10−3
rma10 46𝐾 × 46𝐾 2,329,092 1 × 10−3
cant 62𝐾 × 62𝐾 4,007,383 1 × 10−3
consph 83𝐾 × 83𝐾 6,010,480 9 × 10−4
cop20k 121𝐾 × 121𝐾 2,624,331 2 × 10−4
shipsec1 140𝐾 × 140𝐾 3,568,176 2 × 10−4
scircuit 171𝐾 × 171𝐾 958,936 3 × 10−5
mac-econ 206𝐾 × 206𝐾 1,273,389 9 × 10−5
pwtk 217.9𝐾 × 217.9𝐾 11,524,432 2 × 10−4
webbase-1M 1𝑀 × 1𝑀 3,105,536 3 × 10−6
Facebook 1591 × 63𝐾 × 63𝐾 737,934 1 × 10−7
NELL-2 12𝐾 × 9𝐾 × 28𝐾 76,879,419 2 × 10−5
NELL-1 2.9𝑀 × 2.1𝑀 × 25.5𝑀 143,599,552 9 × 10−13

2 tensor-scalar addition (TSA) and multiplication (TSM),
and tensor-times vector (SpTTV), and tensor-times matrix
(SpTTM) and Matricized Tensor Times Khatri-Rao Product
(MTTKRP) from the PASTA [29] benchmark suite; and an-
other MTTKRP from Splatt [40]. These are implemented
in 3 different languages (C, C++, and Fortran77) and use 4
different sparse storage formats (CSC, CSR, COO, JDS).

5.2 Alternative Approaches
We compared against three alternative approaches LiLAC
[23]: a pattern matching approach that uses constraints over
LLVM IR to detect SpMV and replace with calls to MKL and
cuSPARSE; SpEQ [28]: this uses a data dependence graph and
rewrite system to detect sparse storage format and computa-
tion, respectively replacing with calls to MKL or cuSparse;
GPT4.o [6], a popular LLM, which is provided with the orig-
inal program and prompted to provide equivalent library or
TACO code.

5.3 Platform
SLEB is implemented in Python version 3.10 and clang/LLVM
version 18.0. We target Intel MKL version 2025 1.16, cuS-
PARSE version 12, and TACO version 0.1. The original bench-
marks are compiled with gcc/g++/mpifort version 11.4.
The operating system is Ubuntu 22.04.5 LTS.

We evaluate on a 64-core AMD Ryzen Threadripper 7970X
CPU with 125 GB of RAM (DDR5RAM). The programs lifted
to GPU are executed on an NVIDIA GeForce GTX 1080 Ti
using driver 550.163.01 and CUDA runtime version 12.4.

5.4 Methodology
We give a timeout of 10 minutes to each technique to lift
a benchmark. We evaluate LiLAC and SpEQ with their re-
spective artifacts [22] [27]. GPT.4o was repeatedly tested
with different prompts to find the best recall. To ensure a
fair evaluation, when evaluating the performance, we use
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Figure 3. Coverage by different kernels.
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Figure 4. Coverage by different sparse storage formats.

gcc and the targeted backends, MKL, cuSPARSE, and TACO
(for each approach), and unless otherwise stated, report the
best performance achieved. We run each benchmark ver-
sion (original and lifted) 10 times and report the average.
We reported speedup as the ratio of the lifted program run-
ning time over the original implementation compiled with
gcc -O3. The speedup achieved by every lifting method is
the geometric mean of the speedup of each benchmark that
said method can lift. All programs lifted and unlifted are
used to calculate the geomean speedup, with the non-lifted
programs assigned a speedup of 1 by definition. For the per-
formance experiments, we use as inputs the same real-world
sparse datasets used by the original TACO paper [26] in their
evaluation. Said datasets are described in Table 1.

6 Results
6.1 Coverage
We evaluate the success rate of each technique in two dimen-
sionalities: coverage by sparse operation and sparse storage
format.

6.1.1 Coverage by Kernel. Figure 3 shows the percentage
of programs successfully lifted by each technique grouped
by operation. LiLAC has the lowest coverage accross the
benchmark suite, lifting only 13% of the benchmarks. LiLAC
is only able to synthesize one type of operation, SpMVs, but
even for that operation, it only lifts 28% of the benchmarks.
SpEQ has a slight higher overall coverage lifting 19% of
the benchmarks, but as well as LiLAC, it only lifts SpMVs.
This result shows the brittleness of those techniques, which
can only detect very specific patterns in source code and
miss more complicated implementation styles and complex
operations. Moreover, none of these two approaches can lift
higher-dimensional tensor code.
GPT.4o has strong recognition ability, which enables it

to lift benchmarks that implement distinct operations and
achieve overall coverage of 48%. Nevertheless, it still strug-
gles to synthesize the correct code for complex implementa-
tion styles. For the matrix operations, it lifts the SpMADD
benchmark, 5 of the SpMV, and only 1 of SpMMand SpGEMM.
It is unable to lift the SDDMM benchmark. We observe that
GPT.4o is successful for the cases where the benchmark use
standard algorithms and simple data types, e.g., when the
sparse objects are represented with simple pointers to scalar
types. However, GPT.4o fails to correctly lift benchmarks
that contain optimizations and data structures which are
more complex, e.g., user-defined structs/classes, specialized
templates and containers from the standard library in C++.
For the tensor benchmarks. GPT.4o reaches high coverage
value for simpler operations such as tensor-scalar operations,
but its coverage decreases for non-trivial programs such as
MTTKRP.
SLEB is by far the technique with highest coverage, cor-

rectly lifting 94% of the benchmarks. Furthermore, it is the
only approach able to lift all the different sparse operations,
achieving 100% of coverage in all categories except for SpMV
and MTTKRP. SLEB fails to lift the SpMV from GinkGO
[9] because the benchmark assumes the input matrix has
all the non-zero values as the same constant. For MTTKRP,
SLEB cannot lift the kernel from Splatt [40]. This happens
because while actual MTTKRP computation matricizes the
input tensor, this benchmark uses an already matricized ver-
sion of the actual tensor in the computation, which makes
the equivalent TACO program much complex to synthesize.

6.1.2 Coverage by Format. Figure 4 depicts the cover-
age of each technique in terms of sparse storage format.
LiLAC can lift only 20% of CSR the JDS benchmark. SpEQ
is able to lift only CSR and CSC benchmarks. GPT.4o can
synthesizes benchmarks in CSC, CSR, and COO. However, its
coverage is lower than SLEB in all cases. SLEB outperforms
the alternative approaches and is the only method able to
lift benchmarks that implement all different storage formats.
The only occasion it fails to lift all the category is for the
CSR based benchmark MTTKRP as described above.

113



Accelerating Sparse Algebra with Program Synthesis CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

Table 2. Lifting time results. The ⊺ symbol means the benchmark operates on the transpose of the sparse input.

Benchmark Data Data
Discarded Op Time(s) Benchmark Data Data

Discarded Op Time(s)

CSparse SpMAdd 40 79 1036 34.4 SuperLU SpMM 1 838 1 329.14
CSparse SpMV CSC 1 3 1 1.24 Sextans SpMM 1 25 1 9.72
CSparse SpMV CSR 1 1 3 0.45 CSeg SpGEMM 2 3 307 2.7
CSparse SpMV CSR⊺ 1 2 0 0.82 SpComm3D SpMM 8 1055 95 479.06
CSparse SpMV COO 6 16 13 6.09 SpComm3D SDDMM 210 419 1 99.62
CSparse SpMV COO⊺ 1 1 5 0.4 PASTA TEW Add 13 73 87877 64.63

Dolfinx SpMV 1 3 98 1.64 PASTA TEW Div 1 1 45099 20.96
Netlib SpMV 1 1 2 0.42 PASTA TEW Mul 6 31 2009 8.18
Netlib SpMV⊺ 1 2 1 0.78 PASTA TEW Sub 39 229 73607 109.17
NPB CG SpMV 1 1 17 0.41 PASTA TSA 4 4 29 1.32
Parboil SpMV 1 1 31 0.44 PASTA TSM 1 1 121 0.27
Quantlib SpMV 1 1 25 2.3 PASTA SpTTV 7 21 350 4.47
SciMark SpMV 1 3 1 1.14 PASTA SpTTM 10 30 462 7.7
TACO SpMV 1 3 2 1.18 PASTA MTTKRP 1 3 9680 11.83

GinkGO SpGEMM 71 141 14322 60.95

6.2 Lifting Time
Table 2 summarizes the number of data and operation bind-
ings that SLEB considers per benchmark and the time in
seconds it takes to correctly determine a correct binding.
The number of data bindings considered ranges from 1 to
210 with up to 1055 discarded due to static format incompat-
ibility. Data binding, however, does not require any program
execution and thus lifting time is relatively invariant of it
as can be seen in Figure 5. Operation binding does require
program execution and is closely correlated to lifting time as
can also be seen in the figure. For simple benchmarks such
as CSparse SpMV CSC, Netlib SpMV⊺ and SciMark SpMV,
only one execution is needed, however for more complex
tensor benchmarks such as PASTA TEW Add, more than 87k
are required. Table 2 also reports the number of bindings
discarded with data validation. Due to the format constraints,
SLEB is able to always discard more data bindings than what
it needs to consider during the operation phase. This result
how data validation is efficient to reduce the search space
during operation phase and make lifting scalable.

6.3 Speedup
Speedup onCPU. Figure 6 shows the speedup achieved by

each method on the CPU for each benchmark together with
a geometric mean. We lift the SpMV, SpMM, and SpGEMM
benchmarks to MKL, totaling 18. The remaining 11 bench-
marks are lifted to TACO, which includes sparse matrix ad-
dition, SDDMM and the high-order tensor benchmarks.

The highest speedup values come from PASTA SpTTV and
GinkGO SPGEMM with speedup of 12x and 17x respectively.
Programs lifted to MKL achieve good speedup for CSR and
CSC, but not COO.
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Figure 5. Relation between candidates explored and lifting
time.

For tensor programs, TACO overall generates efficient
code for 75% of TEW benchmarks and for kernels where the
output is dense or semi-sparse. We also observe good perfor-
mance improvement on SpTTV benchmarks, where TACO
schedules optimized the computation when the outptut is
stored in CSR. We do not achieve speedup for tensor-scalar
as the original TSA and TSM benchmarks from PASTA [29]
only scale the non-zero values from the tensor and assume a
particular tensor structure, whereas TACO-generated code
is general and also unable to parallelize those two bench-
marks. The structure assumption is also the reason why TEW
division cannot be accelerated.
SLEB provides the highest speedup of 2.6x against 1.7x

by GPT.4o and 1.2x by LiLAC and SpEQ. This is due to the
strong lifting capabilities of SLEB, which is able to achieve
great coverage and synthesize benchmarks in which speedup
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Figure 6. Overall speedup of benchmarks lifted to CPU. X-axis lists the benchmarks. Y-axis shows the average speedup over
the baseline.
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Figure 7. Overall speedup of benchmarks lifted to GPU. X-axis lists the benchmarks. Y-axis shows the average speedup over
the baseline.

improvements are higher, such as tensor contraction ones
and matrix-matrix kernels.

Speedup on GPU. We are not aware of a target that sup-
ports high-order sparse tensor algebra for GPUs. TACO, for
instance, is unstable to generate CUDA code when the output
is also sparse. We therefore restrict GPU evaluation for the
benchmarks that take sparse matrices as inputs and evaluate
the speedup improvements on a GPU platform lifting the
programs to cuSPARSE. Figure 7 depicts the results. Speedup
gains are always higher in the GPU than the CPU. The low-
est improvement happens in the SpGEMM from CSeg [8],

which is twice faster than the original implementation. Other
than that, the lifted cuSPARSE programs are at least 5x faster.
The highest speedup is 27.6x on the SDDMM benchmark.
As well as for CPU, SLEB is the approach that delivers the
highest geomean speedup of 7.8x against 2x, 1.7x and 1.5x
from GPT.4o, SpEQ, and LiLAC respectively.

Speedup by Input. To evaluate how the performance im-
provements vary with the input, we measure the average
achieved by the benchmarks on each input. Figure 8 illus-
trate those results. For the CPU matrix benchmarks, the
speedup ranges from 2x on bcsstk17 and webbase-1M to

115



Accelerating Sparse Algebra with Program Synthesis CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

 2.0x

 6.3x

 3.8x

11.5x

 3.4x

10.7x

 3.2x

 9.8x

 3.8x

10.8x

 2.8x

10.1x

 4.1x

12.2x

 2.1x

11.0x

 2.4x

 8.5x

 3.8x

12.9x

 2.0x

11.2x

 2.5x  2.5x

 3.3x

Matrices Tensors

0

2

4

6

8

10

12

14

b
cs

st
k1

7

p
d
b
1
H

Y
S

rm
a
1
0

c
a
n
t

co
n
s
p
h

co
p
2
0
k

sh
ip

s
e
c
1

sc
ir
c
u
it

m
a
c-

e
co

n

p
w

tk

w
e
b
b
a
se

-1
M

F
a
ce

b
o
o
k

N
E

L
L-

2

N
E

L
L-

1

Input

S
p
e
e
d
u
p

CPU GPU

Figure 8. Overall speedup of benchmarks lifted to CPU and
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4.1x on shipsec1. For the GPU, the speedup varies from 6.3x
bcsstk17 to 12.9x on pwtk, which is the matrices with the
largest number of non-zero entries. In the case of the tensor
benchmarks, there is a clear trend showing that the speedup
achieved by lifting tends to grow with the sparsity. Lifted
programs run 2.5x faster on facebook and NELL-2 and 3.3x
faster on NELL-1.

7 Related Work
API Matching. There has been prior work in trying to

detect program structures for a variety of tasks, including
accelerating linear algebra kernels [24]. Here, a constraint
language is used to search over a normalized IR to detect
acceleratable regions that match an API. Automatically, de-
termining the constraints that describes an API is explored
in [13–15]. However, such an approach is often sensitive
to code structure [24]. KernelFaRer [17] is a more robust
approach, but only focuses on one pattern, namely dense
matrix multiplication, and is also susceptible to code struc-
ture. A different approach is used in FACC [45]. This uses
input-output equivalence of code sections and is consider-
ably more robust than pattern-based techniques. However,
it only tackles fast Fourier transformation acceleration with
narrow API function signatures. ATC [35] is a similar ap-
proach, this time targeting dense GEMMs like KernelFaRer.
It is extremely robust, yet again limited to just one operator.

Sparse APIMatching. There is considerably less research
in matching sparse code to accelerator libraries due to the

complexity of the task. LiLAC [22] is a development of [24]
tackling sparse vector multiplication (SpMv). It uses a vanilla
implementation of the SpMv to generate constraints that are
used to search the legacy code. More recently, SpEQ [28] uses
a dependency graph of an SpMv implementation to identify
the sparse data format used and egraph-based normalisation
to recognize sections that can be replaced with API to a
sparse matrix vector libraries. Both of these techniques are
only evaluated on SpMv and cannot tackle tensors or lifting
to DSLs.

Tensor Lifters. There has been much recent work in lift-
ing dense legacy code to high-level tensor DSLs. A popular
approach is to use bottom-up enumerative synthesis to gen-
erate potential candidates, which are checked using user
IO testing. Examples include TF-coder [39] C2TACO [34]
and mlirSynth [12], which use type information, compiler
analysis and redundancy checking to narrow the search.
Bottom-up enumerative search has difficulty scaling to large
program size and recently [11] has been developed, which
employs a top-down sketching scheme.
An alternative, Tenspiler, is based on detecting program

invariants [38]. It uses a symbolic synthesizer that generates
the target program and an invariant that proves the program
is correct. Although powerful, it requires external definition
of the syntax and semantics of their target language in their
internal intermediate language. More recent approaches uses
a language model to guess a (set) of candidate(s) and search
for the correct solution [31, 33]. All of these schemes are
limited by the fact that they can only work on dense linear
algebra and are unable to tackle the more challenging task
of sparse lifting to a sparse tensor DSL.

8 Conclusion
This paper presents SLEBwhich tackles the challenging prob-
lem of porting legacy sparse linear algebra code. SLEB use
an LLM to predict a sketch of the solution and then uses
program analysis and type based synthesis to dramatically
reduce the search space of possible code to target parame-
ter bindings. When evaluated on a large set of benchmarks
and real world data sets it outperforms two state-of-the-art
compiler schemes and LLM.
Future work will explore tackling different sparse DSLs.

While LLMs are powerful, they are expensive and future
work will look at replacing it with a more task-specific
trained transformer model.
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