
Guess, Measure & Edit: Using Lowering to Lift
Tensor Code

José Wesley de Souza Magalhães
University of Edinburgh

United Kingdom
jwesley.magalhaes@ed.ac.uk

Jackson Woodruff
University of Edinburgh

United Kingdom
jackson.woodruff@ed.ac.uk

Jordi Armengol-Estapé
University of Edinburgh

United Kingdom
jordi.armegol.estape@ed.ac.uk

Alexander Brauckmann
University of Edinburgh

United Kingdom
alexander.brauckmann@ed.ac.uk

Luc Jaulmes
University of Edinburgh

United Kingdom
ljaulmes@ed.ac.uk

Elizabeth Polgreen
University of Edinburgh

United Kingdom
elizabeth.polgreen@ed.ac.uk

Michael F.P. O’Boyle
University of Edinburgh

United Kingdom
mob@inf.ed.ac.uk

Abstract—Recently, we have observed a steady growth in spe-
cialized hardware accelerators. These accelerators are typically
programmed in high-level domain-specific languages (DSLs),
enabling compilers to generate efficient code for rapidly evolving
heterogeneous hardware. However, rewriting existing code to
exploit DSL compiler performance is an onerous programmer
task. This has led to recent interest in automatically translating
or lifting code to DSLs. Current lifting techniques use lan-
guage models or program synthesis to translate code. Although
language models have proved remarkably successful in related
translation tasks, they are prone to hallucinations. Program
synthesis approaches are accurate but do not scale to complex
tensor DSLs.

This paper presents a novel approach, Guess, Measure & Edit;
that exploits both language models and compiler technology to lift
existing code to high-level DSLs. Given a source program, it uses
a language model to guess an initial equivalent target program.
It then compiles or lowers the guess and the original program,
and measures the low-level distance between them using program
similarity metrics. It iteratively uses these low-level metrics to
guide high-level edits to the guess until it is correct.

To validate this approach, we develop KONRUL which cor-
rectly lifts existing tensor algebra C code to einsum notation,
the basis of tensor contraction DSLs. Our evaluation shows
that KONRUL is fast and accurate, lifting 98% of an extensive
benchmark suite and significantly outperforming 4 state-of-the-
art lifting schemes. KONRUL is scalable and is the only approach
to correctly lift higher-dimensional tensor contraction code. Our
lifted programs result in geomean speedups of 4.07× and 38.30×
when ported to a multi-core CPU and GPU respectively.

Index Terms—Lifting, Language Models, Program Similarity,
Guided Edit

I. INTRODUCTION

Recent years have seen a significant increase in heteroge-
neous parallel architectures. This is driven by the continued
need to deliver application performance, particularly for ML
workloads, as architecture scaling slows. Frequently, these
architectures are accessed using specialized platform-specific
APIs or domain-specific languages (DSL). As ML models can
be expressed in terms of tensor algebra, this has lead to a wide
range of tensor-based DSLs [36], [37], [53], [22], [62], [67],
[66], based on Einstein summation (Einsum) notation [24].

Porting legacy code to emerging hardware therefore re-
quires rewriting sections of code in a suitable DSL. Here,
the programmer writes their application once, and relies on
vendor-supported compilers to generate efficient code for each
new platform. Although a one-off activity, this task remains
a significant programming cost and deters code migration.
This cost has led to recent interest in exploring automated
techniques to rewrite or lift such code into a higher DSL form
[45], [32].

Lifting to Reduce Porting Effort. Existing lifting ap-
proaches primarily use different forms of program synthe-
sis [51], [59], [44]. Such approaches have the benefit of being
portable and able to lift programs to different target languages.
However, they are not scalable in terms of program complexity.
As the size of the source or target program increases, the time
to synthesize a solution grows exponentially. To overcome
this fundamental problem, synthesis approaches rely on strong
hard-coded heuristics to prune the candidate space; in some
cases requiring an externally provided sketch of the target
program [51]. Alternative bottom-up enumerative, input-output
synthesis techniques also fail to scale, requiring an excessively
large number of candidates [59] and occasionally producing
incorrect results [44]. In practice, these approaches cannot
synthesize programs with tensors of greater than 2 dimensions.

Coincidentally, there has been increased use of neural ma-
chine translation and language models for program translation
tasks [63], [17], [23]. In principle, such models could be
used for lifting and are highly attractive as their training
and deployment can be fully automated. Unfortunately, they
require a large amount of training data and are ill-suited to
new, low-resource DSLs. More fundamentally, while language
models are powerful, they are also inaccurate, hallucinating
outputs [54], making them unreliable. Ideally, we would like to
exploit the power of language models, while ensuring correct
translation.

Our approach. This paper proposes a novel, fast, pro-
gram lifting methodology which harnesses the power of
language models and critically uses existing compilation to

216

2025 34th International Conference on Parallel Architectures and Compilation Techniques (PACT)

979-8-3315-8295-1/25/$31.00 ©2025 IEEE
DOI 10.1109/PACT65351.2025.00029

for (int i = 0; i <A_ROW; i++){
 for (int j = 0; j < B_COL; j++){
 int sum = 0;
 for (int k = 0; k < B_ROW; k++){
 sum += a_matrix[i * A_ROW + k] *
 b_matrix[k * B_ROW + j];
 }
 c_matrix[i * A_ROW + j] = sum;
 }
}

 for1
 %temp1 = MUL %v1 %A_ROW

 for2 ...

 for3
 %idx1 = ADD %temp1, %iv3
 %arr1 = GEP %a_matrix, %idx1
 %temp2 = MUL %iv3, %B_ROW
 %idx2 = ADD %temp2, %iv2
 %arr2 = GEP %b_matrix,%idx2
 %mul = MUL %arr1, %arr2
 %sum = ADD %mul, %sum

 %idx3 = ADD %temp1, %iv3
 %arr3 = GEP %c_matrix, %idx3
 STORE %sum %arr3

 for1
 %arr1 = GEP %b %iv1

 for2
 %arr2 = GEP %b, %iv2
 %mul = MUL %arr, %arr2
 %sum = ADD %mul, %sum

 %arr3 = GEP %a %iv1
 STORE %sum %a3

Lowering

a:i = b:i * b:k

Lowering

Guess

Measure

a:i,j = b:i,k * b:k,j

a = torch.einsum("ik,kj -> ij",
 b, c)

(PyTorch)

Export

Edit

Guide

1

2

3

4

5

6

Fig. 1: KONRUL takes as input a C program 1⃝ and tries to guess an equivalent einsum program 2⃝. It lowers both to LLVM
IR 3⃝, 4⃝ and checks similarity between them. KONRUL uses the result of this check to iteratively edit the guess until it finds
an einsum program that is equivalent to the input 5⃝.

overcome their limitations.
Specifically, our framework, Guess, Measure & Edit, uses

a language model to guess a high-level candidate solution;
uses compiler lowering to enable measurement of the low-level
distance between the guess and the original program; and then
predicts high-level edits to apply to the guess to reduce the
low-level distance. Finally, the behavior of the new program is
formally verified to fully match that of the original program.

Our key insight is that while it is difficult to lift a program
in low-level language L to a program in high-level language
H , we frequently have compiler infra-structure that lowers H
to L. As programs that are near each other in H are likely
to be compiled to be near each other in L, if can reduce the
distance between two low-level programs then it is likely that
we also reduce the distance between the high-level ones. This
novel insight enables us to use similarity metrics on the low-
level language to guide our choice of edit rules to apply to
the high-level program. We use this guided editing process to
repair incorrect guesses from a language model.

KONRUL. Based on this methodology, we developed
KONRUL, a code lifter that translates code written in C to

Tensor DSLs, a problem tackled by a wide variety of recent
work [44], [51]. This task is both important, as tensor con-
tractions are a fundamental building block of ML workloads,
and challenging, as the high-dimensionality of tensors exposes
the scalability issues of program synthesis schemes. Tensor
DSLs are primarily based on einsum notation [24]. KONRUL
therefore targets tensor algebra C programs and lifts them
to an einsum program. KONRUL then exports the einsum
program to PyTorch [29], which supports this format. We
test the lifted programs using automatically generated input-
output (I/O) examples to ensure observational equivalence.
Furthermore, we perform formal verification of a candidate
that passes all tests using the bounded model checker CBMC
[38].

We evaluate against 4 state-of-the-art approaches, Ten-
spiler [51], GPT-4 [4], TF-Coder [59] and C2TACO [44].
We show that KONRUL significantly outperforms existing
approaches in terms of the number of programs lifted and
scalability. On an extended benchmark suite of 81 programs
we are able to lift 98% of them in 23 secs (on average),
achieving a 26% to 51% improvement over the baselines.

217

KONRUL and Tenspiler are found to be the only schemes
that consistently generate correctly lifted code. Furthermore,
KONRUL is able to scale and is the only approach to lift all
higher dimensional tensor contraction code correctly. Overall,
the code lifted by KONRUL is able to achieve, on average, a
4.07× to 38.3× speedup over the original implementation,
respectively when ported to a multi-core CPU and GPU
platform.

This paper makes the following contributions:
• The first verified lifting framework to exploit lowering

and source measurement to edit language model halluci-
nations.

• KONRUL, a fast, scalable and correct C to einsum lifter
based on this framework.

• An extensive evaluation of KONRUL against alternative
approaches and the state-of-the-art.

II. GUESS, MEASURE & EDIT

Formally, given an input program in C, denoted P , our aim
is to find an equivalent expression in einsum notation, denoted
E. An expression E is a valid solution iff ∀x.P (x) = E(x),
where x is a list of tensor inputs.

Our framework relies on the key insight that we can
use existing compiler technology to lower P and E to one
common intermediate representation, giving a lowered speci-
fication ∀x.IRP (x) = IRE(x). Since both programs are now
represented in a common language, if we obtain an invalid
guess Ê, i.e., ∃x.Ê(x) ̸= P (x), we can use program similarity
metrics to syntactically compare IRÊ to IRP .

We thus execute the following, until we find a valid solution:
1) Guess an einsum expression, Ê. If ∀x.Ê(x) = E(x) is

true, we have a valid solution. If not, proceed to the next
step.

2) Lower Ê and E to IRÊ and IRE and, using a similarity
metric Sim, measure the syntactic difference between
IRÊ and IRE .

3) If |Sim(IRÊ) − Sim(IRP)| ≥ δ, edit Ê and return to
step 2. If |Sim(IRÊ) − Sim(IRP)| < δ, check if Ê is
a valid solution, i.e., ∀x.Ê(x) = E(x). If Ê is invalid,
edit Ê and return to step 2.

Figure 1 illustrates this on an example C program, lifting
to einsum notation:
• The input is a C program 1⃝ (after it has been checked to see

if it is suitable for lifting) that is given to a trained language
model.The model outputs the best einsum prediction for this
C input as shown in 2⃝ (the guess).

• This program is lowered using an einsum compiler to
generate C code from the guess. As coding styles vary, both
the original C program and the guess are lowered further to
LLVM -Oz IR, which normalizes code, for comparison. The
LLVM IR of the original program is shown in 3⃝, while the
LLVM of the lowered guess is shown in 4⃝.

• We then measure the difference between the two LLVM
IR programs using program similarity metrics. In this case,
the LLVM programs are different, as highlighted by the

fragments shown in 3⃝ and 4⃝. 3⃝ contains three loop
nests, while 4⃝ has two. The memory locations in 3⃝ are
accessed by indexes that are computed based on different
loop induction variables, iv1, iv2 and iv3 whereas in
4⃝ memory is accessed directly using the value of loop

iterators as shown in blue. Furthermore, 3⃝ multiplies values
that are references to two different arrays a matrix and
b matrix while 4⃝ multiplies two references to the same
variable b, as highlighted in red.

• The program similarity metrics are then used to predict an
edit to the einsum notation. This process is repeated to
eventually give the correct lifted notation shown in 5⃝.

• This einsum program is then executed and checked for
I/O equivalence. If successful, it is then verified by model
checking before being exported into PyTorch as shown
in 6⃝.

III. APPLYING GUESS, MEASURE & EDIT TO TENSOR
CODE

We implemented the proposed lifting technique in a tool
called KONRUL, which lifts C code into einsum notation.
KONRUL’s architecture is depicted on Figure 2 and the
search process described in Algorithm 1. KONRUL uses a
Transformer model [64] to guess a solution, compiler lowering
to infer a specification for the guess (section III-A), program
similarity metrics to measure the difference between the
specifications (section III-B) and guide a search of edit rules
(section III-C), and finally testing and model checking to verify
the solution (section III-D).

Target language. We use extended einsum notation as
our target language. Einstein summation (einsum) notation
[24] is a high-level language to express tensor contractions.
An einsum program contains an indexing term for each tensor
where the indices shared between terms are multiplied, and
the indices that are not shared with the left-hand side are
implicitly summed. Original einsum notation does not support
all operations used in tensor algebra, so DSLs adopt an
extended version. The grammar we support, G, is depicted
in Figure 3, and our aim is to find a solution E that is in the
language of G. Once we have a valid solution, it can then
be exported to any DSL that supports einsum notation, e.g.,
PyTorch [29].

A. Language Model: Guess

KONRUL uses a trained encoder-decoder Transformer [64]
to output a predicted einsum notation, Ê, for a given tokenized
input P as shown in the box labeled Guess in Figure 2. Given
the low resource availability of einsum programs, we generate
a synthetic training set to train the model.

1) Data generation. Transformers require a large data set
that captures the domain of interest. However, training data
for DSLs is scarce. As the number of existing C, einsum
program pairs ⟨P,E⟩ is small, we automatically generate then
based on a bottom-up enumeration of the grammar shown in
Figure 3. The generated einsum expressions are then exported
to an einsum compiler [36] which generates equivalent C code.

218

Fig. 2: Overall architecture of KONRUL. Guess is described in Section III-A, Measure is described in Section III-B, Edit
is described in Section III-C and finally Verify is described in Section III-D. Kernel extraction and I/O generation are based
on prior-work.

program ::= tensor = expr

tensor ::= id : index-expr | id
index-expr ::=index | index-expr, index

index ::= i | j | k | l | m | n
expr ::= (expr) | expr op expr | −tensor | tensor |

const | −const

op ::=+ | − | ∗ | /
id ::=T0 | T1 | ...

const ::=C0 | C1 | ...

Fig. 3: The einsum grammar G, which KONRUL uses to
synthesize programs. Programs expressed in this grammar can
be exported to tools such as PyTorch’s Einsum mode.

As the program space is unbounded, we limit both the number
of tensors and their dimensionality to 5. This gives a dataset
of approximately 800k ⟨P,E⟩ pairs.

The main problem is that the C code is generated by a
compiler, not a human, and does not represent real-world
hand-written legacy programs. We therefore pre-process each
generated program before it is used in training, eliminating
wrapper code and then normalizing identifiers in the program
making them one-character long following lexicographical
order. In addition, we replace constants and loop bounds with
fixed symbols e.g. CONS and DIM to prevent many similarly
generated programs differing just by a constant value polluting
the data set. This produces code that is better for training as
it is syntactically closer to the original code.

2) Training. We used the processed 800k ⟨P,E⟩ pairs
for training, separating 5k for validation and 5k for testing.
To ensure fairness, we ensured that none of the evaluated

benchmark programs used in section IV were part of the
training data. The programs were then tokenized using byte-
pair-enconding (BPE) [58] before being used for training. We
trained a 254M-parameter Transformer, with 6 encoder layers
and 6 decoder layers, 16 attention heads and an embedding and
context size of 1024. It shares embeddings across the encoder,
decoder and output layer, and uses an Adam optimizer in place
of gradient descent update [35].

3) Inference. At inference time, we apply the same pre-
processing steps to the unseen source C program before
tokenization. We use standard beam search decoding with a
beam size of 5 and use the best prediction of einsum output as
our initial guess. We replace any constant tokens (CONS) with
a small random integer before passing on to the next stage.

B. Program Similarity: Lower and Measure

Given a kernel program P and an einsum guess Ê, we wish
to estimate how similar the einsum expression is to P . As
shown in box Measure in Figure 2, to facilitate the measure
task, we lower both programs to a common abstraction level.
We lower the expression Ê using an einsum compiler [36] to
generate a program in C, denoted CÊ . We then lower both
P and CÊ to LLVM -Oz IR, giving IRP and IRÊ . The Oz
version of LLVM IR was chosen as it is the most terse and
has the strongest normalization effect.

We developed three similarity metrics to analyze program
features relevant to tensor computation: variable similarity,
indexing similarity and arithmetic operator similarity. They
intuitively capture the number of variables, matrix indices, and
operator applications, occurring in IRÊ and IRP , normalized
by the length of IRP .

1) Variable Similarity. The first similarity metric, Simvars

compares the number of relevant variables in IRP with

219

Algorithm 1: KONRUL search and edit algorithm.
Procedure Edit is described in Algorithm 2.

input : source computation kernel P , LM guess Ê
output: lifted einsum program, or no solution
Algorithm search(P , Ê)

candidates ← ∅;
ϕIO ← generateIO(P);
IRP ← lower(P);
while not timeout do

IRÊ ← lower(Ê);
var-score ← Simvars(IRÊ , IRP);
op-score ← Simops(IRÊ , IRP);
idx-score ← Simindex(IRÊ , IRP);
score ← var-score ∗ op-score ∗ idx-score;
if score = 1 then

if Check(E, ϕIO, P) then
return E

else if score > threshold then
candidates← candidates ∪ E;

Ê ← Edit(Ê, IRÊ , IRP , var-score, op-score,
idx-score);

for c ∈ candidates do
if Check(c, ϕIO, P) ∧Verify(c, P) then

return c
return no solution

the number of variables in IRÊ , denoted V ar(IRP) and
V ar(IRÊ) respectively:

Simvars = max(1−
V ar(IRP)− V ar(IRÊ)

V ar(IRP)
, 0).

A relevant variable is any variable in the program that is
not an induction variable or loop bound. Intuitively, this metric
returns 1 if the programs have the same number of variables, 0
if IRÊ has too many variables and a number between 0 and 1
if IRÊ has too few variables. Note that the number of variables
may differ even in semantically equivalent programs because
the lowered einsum program may contain auxiliary variables
introduced by the compiler. We normalize variable names in
both programs, i.e., we replace identifiers with A,B,C, . . . so
any program with 3 variables will have the same 3 variable
names.

2) Indexing Similarity. The second metric, Simindex, con-
siders the index expressions used in the program. We use
Polly’s [28] polyhedral analysis to obtain a list of index ex-
pressions. We augmented Polly’s analysis to handle constants
within C structures.

Given a program IR, we first extract the set of index
variables used, {i1, . . . , ik}. Let M [e1, . . . , em] denote the
matrix index expression where the variable M is indexed with
expressions e1, . . . , em. For each matrix index expression, we
generate a corresponding matrix index tuple C = (c1, . . . , ck),
where c1 is 1 if i1 appears in e1, and 2 if i1 appears in e2 and
so on, and 0 if it does not appear in any index expressions.

Algorithm 2: Procedure Edit takes both the original
program and a candidate and selects which edit to
apply based on the similarity metrics.

Procedure applyEditRule(Ê, IRÊ , IRP , metric)
case metric = Simvars:

if
|tensors(IRÊ)| < |tensors(IRP)| ⇒ addT (Ê)
elif |tensors(IRÊ)| > |tensors(IRP)| ⇒
deleteT (Ê)
else |tensors(IRÊ)| = |tensors(IRP)| ⇒
renameT (Ê)

case metric = Simindex :⇒ indexing(Ê , IRP)

case metric = Simops:
if |tensors(IRÊ)| > 2⇒ op(Ê , IRP)

else |tensors(IRÊ)| ≤ 2⇒ sign(Ê , IRP)

Procedure Edit(Ê, IRÊ , IRP , var-score, op-score,
idx-score)

case var-score ̸= 1 :⇒ metric← Simvars

case idx-score ̸= 1 :⇒ metric← Simindex

case op-score ̸= 1 :⇒ metric← Simops

applyEditRule(Ê, IRÊ , IRP ,metric)

return Ê

For a program IR that contains n matrix index expressions,
we extract a list of matrix index tuples in the order that they
occur: Indices(IR) = {C1, . . . , Cn}. Similar to the previous
metric, Simindex between two programs IRÊ and IRP is
calculated as:

Simindex = 1−
D(Indices(IRÊ), Indices(IRP))

|indices(IRP)|
,

where D is the Levenshtein Distance [43] distance between the
two lists, i.e., the number of substitutions/insertions/deletions
needed to change indices(IRÊ) into indices(IRP). This is
computed using the Wagner-Fischer algorithm [46].

3) Arithmetic Operation Similarity. The final metric,
Simops, compares the mathematical operations occurring in
each program. Let App = (Op, x1, . . . xm) be a tuple that
denotes the operator Op is applied to the operands x1, . . . xm.
For a program IR that contains n operator applications, we
extract a list of operator application tuples from the innermost
loops in the lowered program, in the order that they occur:
Ops(IR) = {App1, . . . , Appn}. We use |Ops(IR)| to indi-
cate the length of the list Ops(IR), which considers the length
of each operator application tuple added.
Simops between two programs IRP and IRÊ is then

defined as:

Simops = 1−
D(Ops(IRÊ), Ops(IRP))

|Ops(IRP)|
,

where D is again the Levenshtein distance.

220

a:j = b:i + b:j a:i = b:i,j * c:ja:j = b:i + c:j a:i = b:i + c:j a:i = b:i,j + c:j

Fig. 4: Edit rule selection based on program similarities. KONRUL first selects rules based on the variable similarity, secondly
it analyzes indexing similarity and finally apply rules to edit arithmetic operators.

id
ra−→ id∗ (replace id)

(const|tensor) rb−→ (const|tensor)∗ (replace const/tensor)
expr

rc−→ (expr op∗ tensor∗)|(tensor∗ op∗ expr) (add tensor)
expr

rd−→ (expr op∗ const∗)|(const∗ op∗ expr) (add const)
expr op tensor re−→ expr (remove tensor)
expr op const

rf−→ expr (remove const)
expr op expr

rg−→ expr op∗ expr (replace operator)
(tensor|const) rh−→ −(tensor|const) (negate tensor/const)
− (tensor|const) ri−→ (tensor|const) (un-negate)
id:index-expr

rj−→ id : index-expr, index∗ (add index)
id rk−→ id : index∗ (add index)
id:index-expr, index rl−→ id : index-expr (remove index)
index rm−−→ index∗ (replace index)

Fig. 5: The set of parameterized edit rules used by KONRUL.
The symbols expr, tensor, op, index-expr and id correspond
to the einsum expressions defined in the grammar in Figure 3.
An asterisk (∗) indicates that the expression has been intro-
duced or changed by the edit rule.

If the candidate matches IRP according to all three simi-
larity metrics, that is, a candidate with an overall score equal
to 1, the edit phase is skipped, and the candidate is passed
forward to the check stage of the pipeline. Any candidates
with a sufficiently high score are stored in a set of backup
candidates to be checked if the search terminates without
finding a candidate with a score of 1.
Example. The example depicted in Figure 4 shows the simi-
larity scores for various candidate solutions when compared to
a standard C implementation of a dense matrix-vector product.

C. Edit

Consider the box labeled Edit in Figure 2. If the similarity
metrics determine that the lowered guess is far from the
lowered original source, they are used as a guide to edit the
einsum guess. An edit changes one or more elements of the
einsum notation which is then lowered once again which is
returned to the measure phase as the new candidate solution.

The set of parameterizable edit rules is shown in Figure 5.
A key feature of these edit rules is that they are not semantics-
preserving, unlike traditional rewrite rules used by compilers,
which enables them to transform the potentially semantically
incorrect initial guess into a semantically correct einsum
expression. At each iteration, we select a similarity metric,

and apply edit rules targeting that specific similarity metric,
as shown in Algorithm 2.

KONRUL starts editing based on the variable similarity
(with metric Simvars and rules ra–rf), because this gives us
the correct size of the program before exploring further. In the
algorithm, addT is a random choice between rules rc and rd,
deleteT is a random choice between re and rf , and renameT
is a random choice between ra and rb (noting that we choose
rules that modify constants only if there are constants present
in P).

Second, we repair the index operators, using metric
Simindex . In each iteration, we fix the first mismatched index
returned by the polyhedral analysis, using an appropriate rule
selected from rj–rm

Finally, we repair the operators used to act on the tensors,
using metric Simops . In the algorithm, op randomly chooses
and replaces an operator using rg , and sign randomly chooses
a tensor, and then applies either rh or ri. We edit the arithmetic
operators last because that is the largest gap between einsum
and IR representations, which makes the corresponding metric
often imperfect.
Example. Figure 4 shows a sequence of edits selected by
KONRUL to lift a matrix-vector product in einsum from an in-
correct guess. At each step KONRUL analyzes each similarity
score as described above, and selects a rule accordingly.

D. Check (Testing and Verification)

The final stage of the process is to check for correctness
denoted by the Verify box in Figure 2. Once IRÊ is
determined to be sufficiently similar to IRP , according to
the similarity metrics, the Check call in Algorithm 1 tests
that the result is correct. We do this using observational
equivalence [25] — testing that the new einsum program
produces the same results as the original C program. We
implement automatic generation of input-output pairs from
the original kernel implementation P , based on previous work
[44]. This is a fast and scalable way to filter out incorrect
candidates.

To provide stronger guarantees of correctness, we then
verify the candidate using bounded model checking. We lower
the original C code into MLIR [40], and we lower the einsum
into MLIR using JAX [30]. We then generate a C file, which
initializes two copies of a set of nondeterministically assigned

221

inputs, executes the original C code on one copy of the inputs,
and the lowered einsum code on the other copy, and asserts
that the outputs must be equal. We use CBMC [38], a bounded
model checker for C programs, to verify that this assertion is
never violated. Given the undecidability of the problem, we
place two limits on this verification: first, we limit the size
of the input matrices to a fixed bound; second, in (the small
number of) cases where verification using IEEE floating-point
semantics exceeds a time-out, we use verification with real
numbers in place of the floating-point representation.

IV. EXPERIMENTAL SETUP

A. Environment
Benchmarks. We gathered a suite consisting of 81 bench-

marks used by different prior work on lifting tensor code
[44], [51]. The benchmarks come from existing applications,
benchmark suites and high-performance libraries that cover
a variety of domains including image processing [6], digital
signal processing [3], [68], [57], mathematical functions [2],
array programming [60], [56], and deep learning [55], [1].
They include a wide ranging of programming styles and
optimizations including unrolled loops and post-increment
pointer addressing. We also include higher-dimensional tensor
contraction programs described in [16].

Platform. Both original and lifted programs were exe-
cuted on an 36-core Intel Xeon W-2285 mlti-core CPU at
3.00GHz with 125 GB of RAM (DDR4) at 2666 MT/s and an
Nvidia RTX A6000 GPU using driver version 510.47.03 and
CUDA runtime version 11.6. KONRUL’s language model is
implemented using Fairseq [48] version 0-12.2 with Google’s
SentencePiece [39] tokenizer. We use TACO version 0.1,
LLVM version 14.0, PyTorch version 2.3.0, and gcc version
9.4.

B. Competitive techniques
We compare KONRUL to a set of prior published lifting

techniques.
• TF-Coder [59]: neural-guided bottom-up synthesizer for

TensorFlow programs.
• C2TACO [44]: bottom-up enumerative synthesizer for

TACO [36] programs that uses static program analysis to
drive search.

• Tenspiler [51]: verified-lifting-based approach that lifts ten-
sor code written in low-level languages such as C++ and
Python to different tensor API/DSLs

• GPT-4 [4]: general-purpose large language model. We eval-
uate it on code generation experimenting with different
prompts to maximize its accuracy.
We also implement variations of KONRUL.

• Greedy: greedily edits the einsum guess. At each iteration
it randomly edits the current best candidate a number of
times, lowers, and selects the nearest program according to
the similarity metrics for the next iteration.

• LM: just uses the Transformer model to predict the einsum
program. This baseline allows isolation of the impact of
KONRUL’s measure and edit phases.

C. Methodology

Each technique was given a time budget of 2 minutes
to lift each program. We convert TF-Coder, C2TACO and
Tenspiler output programs into einsum to allow direct and fair
comparison. KONRUL was given the best einsum guess from
the Transformer. We included its lifting and testing times in
reported results. As it has to evaluate many candidates, we
provide TF-Coder with a small I/O example, enabling it to
significantly lift more candidates than reported in previous
work [44]. Tenspiler was evaluated using the hand-written
grammars provided in the reproducibility artifact [52]. GPT-
4 was repeatedly tested with different prompts to find the
best recall. The alternative baselines rely on a random com-
ponent, so we selected the best performance over 10 runs
as a competitive baseline. To ensure a fair evaluation, when
evaluating the performance, we use gcc and PyTorch compilers
(for each approach) and, unless otherwise stated, report the
best performance achieved. We reported speedup as the ratio
of the lifted einsum program running time over the original
implementation compiled with gcc -O3. The speedup achieved
by every lifting method is the geometric mean of the speedup
of each benchmark that said method can lift. All programs
lifted and unlifted are used to calculate the geomean speedup.
If a program is unlifted, it has a speedup of 1 by definition.

V. RESULTS

A. Coverage

Figure 6 shows the percentage of programs successfully
lifted by each technique across the benchmark categories.
KONRUL lifts 98% of the programs across the entire suite,
lifting 100% of the benchmarks in 9 categories. It fails to lift
2 programs due to LLVM common sub-expression elimination
during LLVM lowering, which optimizes away references,
suggesting the need for a more sophisticated similarity metric.

C2TACO performs well in most categories and lifts 72% of
the benchmark suite, though is outperformed by both Tenspiler
and TF-Coder on blend, DSPStone, and simpl array.
Tenspiler is almost successful as C2TACO, lifting 70% of the
benchmarks, being the most effective method on blend. Ten-
spiler’s symbolic reasoning is effective on many benchmarks,
but it struggles to tackle more complex programs involving
large loop depths and tensors with high-dimensionality. TF-
Coder achieves 62% of coverage, but its enumerative search
does not scale when the search space becomes too large.
94% of TF-Coder failures are timeouts and the remaining are
semantically wrong programs. GPT-4 has the lowest coverage
value of 47%. Although it can always produce a solution in
time due to its neural-based generation, it produces invalid
answers in the majority of the benchmark suites. Semantically
wrong programs represent 86% of its failures while 14% are
syntactically invalid.

Correctness. Only KONRUL and Tenspiler are able
to provide correctly lifted programs in all cases. Both the
enumerative schemes C2TACO and TF-Coder occasionally
fail due to their reliance on I/O examples as specifications

222

 47%

62%
70%

72%

98%

0
10
20
30
40
50
60
70
80
90

100

blas
blend

Darknet
DSP

DSPStone

llama

makespeare

MathFu

simpl_arra
y

UTDSP
Tensor

Contractions
Total

Benchmark Suite

Li
fte

d
(%

)

GPT−4 TF−Coder Tenspiler C2TACO KONRUL

Fig. 6: Lifting coverage across different benchmark categories. Y-axis shows the percentage of programs lifted by each approach
in each category listed on the X-axis. The TOTAL group shows the average across the whole benchmark suite.

of the target. C2TACO generates syntactically correct but
semantically incorrect code in 2 cases due to insufficient
coverage by its I/O examples. As an example, in one case it
generates C = AB rather than C = AB+C, assumming the C
matrix is initialized to 0. TF-coder relies on a small number of
examples to speedup its search, but in two separate cases these
leads to incorrectly lifted code. GPT-4 unsurprisingly gives the
largest number of semantically incorrect translations, 37, due
to the well known problem of LLM hallucinations.

1) Coverage by Program Complexity.. Figure 7 shows
lifting success rate as function of the highest dimensioned
tensor in the lifted program. Apart from GPT-4, all methods
have good coverage on the benchmarks with dimensionality
1. KONRUL lifts 98% of those benchmarks, while Tenspiler
and TF-Coder lift 89.7% and C2TACO lifts 87.7%. On dimen-
sionality 2, KONRUL is the only method that maintains high
coverage, lifting 96%. Tenspiler and GPT-4 can both lift 60%
while C2TACO lifts 52%. TF-Coder performance degrades
and is only able to lift 24% of the benchmarks.

For the benchmarks performing operations on high-
dimensionality tensors with 3 or 4 dimensions, only GPT-
4 and KONRUL successfully lift any programs. This shows
that enumerative techniques scale poorly since the program
search space grows exponentially with dimensionality. GPT-
4 achieves 80% and 50% of success rate respectively while
KONRUL lifts all the programs in both categories. This result
shows that language models are scalable and that using their
output as an initial guess is useful to handle more complex
programs.

B. Program Space Exploration

This section evaluates efficiency in terms of the number of
candidates explored during search. GPT-4 is not considered as
it does not explicitly search a candidate space. Tenspiler is also
excluded as we cannot determine the number of candidates

 0% 0% 0% 0% 0% 0% 0
10
20
30
40
50
60
70
80
90

100

1 2 3 4
Highest Dimensionality

Li
fte

d
(%

)

 GPT−4 TF−Coder Tenspiler C2TACO KONRUL

Fig. 7: Lifting coverage by program complexity. Y-axis shows
the percentage of programs lifted given different values of
highest-dimensionality listed on the X-axis.

the underlying SMT solver considers. Instead, we evaluate
KONRUL against Tenspiler in terms of lifting time.

1) I/O-based Techniques. Figure 8 evaluates the efficiency
of the various I/O-based techniques by plotting the number of
programs lifted vs the number of candidate programs explored.

KONRUL lifts 79 benchmarks, 78 of them by exploring a
maximum of 39 candidates. Of those 78, KONRUL lifts 50 by
exploring fewer than 12 candidates and 30 with fewer than 6
candidates. KONRUL lift one further program by exploring 93
candidates, due its large number of bracketed sub-expressions.
Out of the 56 benchmarks that C2TACO lifts, 81% are found
visiting up to 10 candidates. However, when C2TACO explores
more candidates it is only able to increase its coverage by
11 programs and is limited by an exponential search space.
TF-Coder can lift 14 benchmarks when evaluating 1000 can-
didates, and 42% of the benchmarks when evaluating up to
10000 candidates. The alternative baseline approach Greedy,

223

Fig. 8: Cumulative number of candidates explored during
lifting by different I/O-based techniques. X-axis shows cu-
mulative number of candidates explored and Y-axis shows the
number of programs lifted. X-axis is on logarithmic scale.

performs poorly and although it explores fewer than 1000
candidates, it only lifts 25 programs. Using the metrics just
to check if exploration is proceeding towards a solution is
not enough to scale. Instead, KONRUL directly employs the
values to decide what candidate to explore at every iteration.

2) The Impact of Similarity Metrics.. As explained in
Section III, KONRUL does not execute any of the candidates
explored during search. Instead, it only tests candidates that are
near the original program according to our similarity metrics.
Table I shows the average number of candidates explored and
the number of candidates tested by KONRUL in different
categories. Although the number of programs explored by
KONRUL is on average 11.2, the number of candidates that
are actually tested with I/O examples is on average 2.4. In
fact, in 70% of the cases KONRUL tested only one candidate,
which shows that the similarity metrics are a useful way to
identify good candidates during search. In all cases, where the
similarity metrics equal 1, the candidate is always verified as
correct.

3) Evaluation Against Tenspiler. Tenspiler can lift more
benchmarks than KONRUL given a very small time budget due
to its externally provided target program sketches. Tenspiler
lifts 13 benchmarks in under 1 second, while KONRUL’s
smallest lifting time is 1.5 seconds.

Nevertheless, KONRUL lifts more benchmarks in com-
parison to Tenspiler. Tenspiler reaches a maximum of 56
benchmarks lifted under 30 seconds. Although KONRUL
lifts 55 under the same limit, if given a larger budget of
2 minutes, Tenspiler can only lift one additional benchmark
while KONRUL can successfully lift 24 more. In total, KON-
RUL is lifts 79 programs against 57 by Tenspiler. Tenspiler’s
symbolic search struggles to reason about programs with
large loop nesting levels (> 2), which is common in code
with complex contractions that manipulates tensors with high-
dimensionality.

TABLE I: Average number of candidates explored vs candi-
dates tested with I/O across different benchmark categories.

Category Explored I/O Tested
blas 6 1
blend 35.6 8.3
Darknet 11 2.8
DSP 6.77 1.37
DSPStone 6.1 1.2
llama 16.8 1
makespeare 5.2 1
MathFu 7.4 1.9
simpl array 4.9 1
UTDSP 7.5 1.8
Tensor Contractions 15.3 2.75
Mean 11.2 2.4

Mean
Tensor Contractions

UTDSP
simpl_array

MathFu
makespeare

llama
DSPStone

DSP
Darknet

blend
blas

0 10 20 30 40 50 60 70 80
Time (seconds)

B
en

ch
m

ar
k

C
at

eg
or

y

Search IO Testing

Fig. 9: Lifting time breakdown of KONRUL. Y-axis shows
different benchmarks categories with the average value at the
bottom. X-axis shows the time taken by KONRUL to search
for candidates and test the ones near to the original C program.

4) Extended Timeout. As a form of limit study, we extended
the timeout of 2 minutes to 24 hours to see how many
additional programs Tenspiler and C2TACO were able to
lift. In 24 hours, Tenspiler is not able to lift any additional
programs while C2TACO is able to lift another 5. In both
cases, none of the high dimensional tensor contractions were
lifted. In fact, in some cases C2TACO was still constructing
its search space and had not started checking candidates.

C. Detailed Evaluation of Lifting Time

Figure 9 shows the average time spent in KONRUL’s search
phase, that is, guessing, measuring and editing, and the time
taken to test the final candidates, for different benchmark
categories. KONRUL takes an average of 23 seconds to lift a
program, of which 10 seconds correspond to search and 13 to
testing.

Search time is usually longer than testing except for
blend, Darknet, and Tensor Contraction programs.
For blend and Darknet are the categories in which KON-
RUL I/O tests more than one candidate more often, 83% and
27% respectively. The Tensor Contraction benchmarks
perform heavy computation on large tensors and the inputs are

224

0.00

0.25

0.50

0.75

1.00

blas
blend

Darknet
DSP

DSPStone

llama

makespeare

MathFu

simpl_arra
y

UTDSP
Tensor

 Contractions
Mean

Benchmark Category

T
im

e
(s

ec
on

ds
)

(a) Average verification time across different benchmark categories.

0

20

40

60

80

100

float real
Datatype

V
er

ifi
ed

 (
%

)

Timeout Verified

(b) Verification coverage with floating
points and real datatypes.

Fig. 10: CBMC verification results. 10a shows the average time taken to verify a program across different categories. 10b
shows the verification success rate using two different datatypes on all the programs KONRUL lifts.

LM Greedy TF−Coder Tenspiler GPT−4 C2TACO KONRUL

1.11x 1.26x 1.29x 1.32x

2.31x
1.80x

4.07x

0

1

2

3

4

5

(a) CPU

S
pe

ed
up

 1.53x 2.53x
 5.17x 5.78x 6.42x

 8.83x

38.30x

0

10

20

30

40

(b) GPU

Fig. 11: Geomean speedup obtained by lifted programs on different platforms. We report speedup as the ratio between the
running time of the einsum program over the original implementation. In each case the performance achieved is assuming
using the best compiler gcc or PyTorch.

constant sizes. Testing time can be reduced by using smaller
inputs.

D. Verification
We measure the time taken by CBMC to verify a lifted pro-

gram. As shown in Figure 10a, the overall time is small with
an average of 0.27 seconds. The longest time taken is 0.83 sec-
onds on the Tensor Contractions programs. These pro-
grams contain higher-dimensional tensor operations in which
bounded model checking can take up to 5.2 seconds. The
fastest verification occurs DSP, llama and simpl array
categories with an average time of 0.09 seconds.

We verify lifted programs using two different datatypes:
floating points and reals. However, verifying equivalence with
floating point is challenging [10], and a small number of
benchmarks exceed a timeout (this does not mean that the
solutions are incorrect, simply that CBMC has not managed to
prove equivalence). We thus extend CBMC to support arrays
of real numbers, which we internally represent as rationals.
Figure 10b shows the percentage of benchmarks successfully
verified as correct. We prove floating point equivalence for
solutions to 69/79 (87%), and the remaining 10 timeout. We
are, however, able to prove that 100% of the translations are
correct with real data types.

E. Speedup

Lifting code to Einsum notation enables us to leverage com-
pilers that support said format to optimize tensor operations
and generate fast code for different hardware platforms. We
exported the lifted programs to PyTorch and executed them on
a multi-core CPU and a GPU. Figure 11 depicts a summary
of the geo-mean speedups achieved by each method on both
platforms.

Performance gains are always higher when lifted code is
executed on GPU. KONRUL significantly outperforms all
other techniques as it is able to lift more of the benchmark
suite. It achieves an overall speedup of 4.07× on the CPU
and 38.3× on the GPU. This is primarily due to the large
speedups available when executing higher-dimensionality op-
timized tensor code. TF-Coder performs relatively poorly on
the CPU, achieving a speedup of 1.29×, but improves on the
GPU providing a 5.17× speedup. Tenspiler performs similarly,
providing 1.32× and 5.78× speedups respectively. Finally,
C2TACO achieves 1.80× speedup on CPU and 8.83× on GPU
while GPT-4 reaches 2.31× and 6.42× respectively. Although
C2TACO and Tenspiler are able to lift more programs than
GPT-4, these do not result in meaningful performance on the
CPU. However, on the GPU, this results in a significant im-

225

provement. The variation baselines approaches provide modest
impact on both platforms as they achieve low coverage on the
benchmark suite.

VI. RELATED WORK

Neural Machine Translation. NMT has been applied
to lifting-related translation tasks, in particular decompilation,
lifting binary code into an IR or higher level language [33],
[15], [9], [8]. Studies generally show that these models are
prone to errors in their translation [49]. As a result, a number
of error correction techniques have been developed [34], [26].
In [41], a language model (LM) is combined with symbolic
solvers to automatically translate between ARMv8 and RISC-
V assembly. It uses low confidence on translated tokens
to initiate an SMT-based sketching process to search for a
better solution. While the accuracy achieved is modest, it is
an interesting orthogonal approach to improving translations.
Another approach is to use NMT to learn repairs [18], where
a sequence-to-sequence method is proposed to fix bugs in Java
programs.

Synthesis for Lifting. Early work used synthesis to
determine the behavior of an accelerator API [21], [19], [20]
to enable later pattern matching and replacement of user
code with library calls [27]. It was extended to mediate
the mismatch between user code and accelerator hardware
[65]. More generally, using program synthesis to generate
one program that is equivalent to another has been explored
in super-optimization [50], deobfuscation [31] and program
lifting. It has been used for lifting in a number of domains
from stencil codes [45], [32], to MapReduce [5], and digital
signal processing [7].

General frameworks like MetaLift [11] enable the develop-
ment of these lifters, and have been applied to matrix multipli-
cation and convolution [47]. Metalift is used by Tenspiler [51]
to lift sequential code to tensor processing languages. Its
core is an IR that makes synthesis tractable by abstracting
operations commonly used in tensor computations, as well as
an underlying symbolic synthesizer that generates the target
program and an invariant that proves the program is correct.
They however require the user to define the syntax and seman-
tics of their target language as well as a set of compilation
rules. Recent work [12] uses few-shot learning with GPT-4
within a verified lifting framework, to suggest both candidate
solutions and the invariants. Our work is complementary to this
approach, as our novel synthesis method would allow guided
repair of any incorrect guesses from the LLM.

TF-Coder [59] and C2TACO [44] both perform bottom-
up enumerative synthesis to search the space of programs,
using user-provided input-output examples as specifications.
They use type information, compiler analysis and redundancy
checking to narrow the search. mlirSynth [14] uses the same
method as C2TACO in the MLIR [40] IR rather than DSL
space. Like all enumerative approaches, these methods fail to
scale to large tensor programs. A recent alternative approach
[13] employs top-down sketching to overcome scalability at
the cost of potentially finding sub-optimal solutions.

General Synthesis Algorithms. The majority of synthesis
algorithms are based on Counter-Example Guided Inductive
Synthesis (CEGIS) [61]. Here, the only feedback is a single
input on which a proposed candidate fails. On receiving a
counterexample, CEGIS discards the current candidate pro-
gram without attempting any repair. In contrast, the Guess,
Measure & Edit framework obtains more detailed feedback
from the similarity metrics and attempts to repair the candi-
date, rather than discarding it, resulting in a more efficient
search.

Some prior synthesis work uses metrics to guide the search.
The following two works construct programs by enumeration.
Euphony [42] learns a probabilistic higher-order grammar
from a training data set, and then uses this to guide an A∗

search in the space of the production rules of the grammar.
Effectively, the cost metric used by the A∗ search estimates
the total cost of the production rules needed to turn a partial
program into a complete one. SyMetric [25] enumerates the
space of programs with bottom-up search and then clusters
these programs into equivalence classes based on an expert-
provided distance metric. The metric is focused on the seman-
tic similarity of the input/output behavior of programs, rather
than our metrics which focus on the syntactic similarity. Whilst
this approach is effective for the domains on which it is eval-
uated, it is not a good fit for einsum programs: first, because
very small syntactic differences in einsum programs can result
in substantially different semantic behavior; second, due to the
expressivity of our grammar, the space of programs that would
be enumerated with bottom-up search before clustering could
begin would be impractically large.

VII. CONCLUSION

This paper presented a new lifting methodology, Guess,
Measure & Edit, that exploits the power of language model
based translation and overcomes its shortcomings using com-
piler technology. Based on this methodolgy, we implemented
KONRUL, a program lifter capable of taking legacy C code
and delivering high performance on CPU and GPU platforms.
We compared KONRUL against 4 state-of-the-art lifting ap-
proaches and show that is more accurate and scales better
than both enumerative synthesis and language models. On
a extended benchmark suite, KONRUL lifts 98% of the
benchmarks exploring an average of 11.2 candidates during
search and taking an average of 23 seconds. KONRUL’s lifted
programs can be easily ported to parallel architectures and
achieve a speedup of 4.07× on a multicore CPU and 38.30×
on a GPU platform.

Currently, our implementation has similarity metrics and
edit space specialised to the tensor domain. Future work will
investigate a more generic similarity and edit space, going
beyond tensor DSLs.

ACKNOWLEDGEMENTS

José Wesley de Souza Magalhães and Alexander Brauck-
mann are partly sponsored by Huawei Research. We thank
the reviewers for their insightful comments.

226

REFERENCES

[1] llama2.cpp. https://github.com/leloykun/llama2.cpp/.
[2] Mathfu. https://github.com/google/mathfu.
[3] Texas instrument digital signal processing (dsp) library for msp430

microcontrollers. https://www.ti.com/tool/MSP-DSPLIB.
[4] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge

Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[5] Maaz Bin Safeer Ahmad and Alvin Cheung. Automatically leveraging
MapReduce frameworks for data-intensive applications. SIGMOD, 2018.

[6] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and
Shoaib Kamil. Automatically translating image processing libraries to
halide. ACM Transactions on Graphics (TOG), 38(6):1–13, 2019.

[7] Maaz Bin Safeer Ahmad, Alexander J Root, Andrew Adams, Shoaib
Kamil, and Alvin Cheung. Vector instruction selection for digital signal
processors using program synthesis. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1004–1016, 2022.

[8] Jordi Armengol-Estapé, Rodrigo CO Rocha, Jackson Woodruff, Pasquale
Minervini, and Michael FP O’Boyle. Forklift: An extensible neural lifter.
Conference on Language Modeling, 2024.

[9] Jordi Armengol-Estapé, Jackson Woodruff, Chris Cummins, and
Michael F.P. O’Boyle. SLaDe: A portable small language model
decompiler for optimized assembler. CGO, 2024.

[10] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile
and industrial-strength SMT solver. In TACAS (1), volume 13243 of
Lecture Notes in Computer Science, pages 415–442. Springer, 2022.

[11] Sahil Bhatia, Sumer Kohli, Sanjit A Seshia, and Alvin Cheung. Building
code transpilers for domain-specific languages using program synthesis.
ECOOP, 2023.

[12] Sahil Bhatia, Jie Qiu, Sanjit A Seshia, and Alvin Cheung. Can llms
perform verified lifting of code? Technical Report, 2024.

[13] Alexander Brauckmann, Luc Jaulmes, José W de Souza Magalhães,
Elizabeth Polgreen, and Michael FP O’Boyle. Tensorize: Fast synthesis
of tensor programs from legacy code using symbolic tracing, sketching
and solving. In ACM/IEEE CGO, 2025.

[14] Alexander Brauckmann, Elizabeth Polgreen, Tobias Grosser, and
Michael FP O’Boyle. mlirsynth: Automatic, retargetable program raising
in multi-level ir using program synthesis. In 2023 32nd Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 39–50. IEEE, 2023.

[15] Ying Cao, Ruigang Liang, Kai Chen, and Peiwei Hu. Boosting neural
networks to decompile optimized binaries. In Proceedings of the 38th
Annual Computer Security Applications Conference, pages 508–518,
2022.

[16] Lorenzo Chelini, Andi Drebes, Oleksandr Zinenko, Albert Cohen, Nico-
las Vasilache, Tobias Grosser, and Henk Corporaal. Progressive raising
in multi-level ir. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 15–26. IEEE, 2021.

[17] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks
for program translation. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18, page
2552–2562, Red Hook, NY, USA, 2018. Curran Associates Inc.

[18] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet,
Denys Poshyvanyk, and Martin Monperrus. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. IEEE Transactions on
Software Engineering, 47(9):1943–1959, 2019.

[19] Bruce Collie, Philip Ginsbach, Jackson Woodruff, Ajitha Rajan, and
Michael FP O’Boyle. M3: Semantic api migrations. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, pages 90–102, 2020.

[20] Bruce Collie and Michael FP O’Boyle. Program lifting using gray-
box behavior. In 2021 30th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 60–74. IEEE,
2021.

[21] Bruce Collie, Jackson Woodruff, and Michael FP O’Boyle. Modeling
black-box components with probabilistic synthesis. In Proceedings
of the 19th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, pages 1–14, 2020.

[22] Adhitha Dias, Kirshanthan Sundararajah, Charitha Saumya, and Milind
Kulkarni. SparseLNR: Accelerating sparse tensor computations using
loop nest restructuring. ICS, 2022.

[23] Mehdi Drissi, Olivia Watkins, Aditya Khant, Vivaswat Ojha, Pedro
Sandoval, Rakia Segev, Eric Weiner, and Robert Keller. Program
language translation using a grammar-driven tree-to-tree model. ICML,
2018.

[24] Albert Einstein et al. The foundation of the general theory of relativity.
Annalen Phys, 49(7):769–822, 1916.

[25] John K. Feser, Isil Dillig, and Armando Solar-Lezama. Inductive
program synthesis guided by observational program similarity. Proc.
ACM Program. Lang., 7(OOPSLA2):912–940, 2023.

[26] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Cheng, and Yuandong Tian.
Coda: An end-to-end neural program decompiler. NeurIPs, 2019.

[27] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin,
Christophe Dubach, and Michael FP O’Boyle. Automatic matching of
legacy code to heterogeneous apis: An idiomatic approach. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
139–153, 2018.

[28] Tobias Grosser, Armin Groesslinger, and Christian Lengauer.
Polly—performing polyhedral optimizations on a low-level intermediate
representation. Parallel Processing Letters, 22(04):1250010, 2012.

[29] Sagar Imambi, Kolla Bhanu Prakash, and GR Kanagachidambaresan.
Pytorch. Programming with TensorFlow: Solution for Edge Computing
Applications, pages 87–104, 2021.

[30] JAX. JAX: High performance array computing. Accessed 2024.
Available at https://jax.readthedocs.io/en/latest/index.html.

[31] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. In ICSE (1), pages 215–
224. ACM, 2010.

[32] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-
Lezama. Verified lifting of stencil computations. PLDI, 2016.

[33] D. S. Katz, J. Ruchti, and E. Schulte. Using recurrent neural net-
works for decompilation. In 2018 IEEE 25th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER),
pages 346–356, 2018. https://doi.org/10.1109/SANER.2018.8330222
doi:10.1109/SANER.2018.8330222.

[34] Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran Yahav. Towards
neural decompilation. CoRR, 2019.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017. https://arxiv.org/abs/1412.6980 arXiv:1412.6980.

[36] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. The tensor algebra compiler. OOPSLA, 2017.

[37] Julien Klaus, Mark Blacher, Joachim Giesen, Paul Gerhardt Rump, and
Konstantin Wiedom. Compiling linear algebra expressions into efficient
code. ICCS, 2022.

[38] Daniel Kroening and Michael Tautsching. CBMC — C bounded model
checker. TACAS 2014, (8413):389–391, 2014.

[39] Taku Kudo and John Richardson. Sentencepiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural text
processing. arXiv preprint arXiv:1808.06226, 2018.

[40] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. Mlir: Scaling compiler infrastructure
for domain specific computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 2–14.
IEEE, 2021.

[41] Celine Lee, Abdulrahman Mahmoud, Michal Kurek, Simone Cam-
panoni, David Brooks, Stephen Chong, Gu-Yeon Wei, and Alexander M
Rush. Guess & sketch: Language model guided transpilation. arXiv
preprint arXiv:2309.14396, 2023.

[42] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating
search-based program synthesis using learned probabilistic models. In
PLDI, pages 436–449. ACM, 2018.

[43] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions,
Insertions and Reversals. Soviet Physics Doklady, 10:707, February
1966.

[44] José Wesley de Souza Magalhães, Jackson Woodruff, Elizabeth Pol-
green, and Michael F.P. O’Boyle. C2TACO: Lifting tensor code to
TACO. GPCE, 2023.

[45] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil,
Jonathan Ragan-Kelley, Sylvain Paris, Qin Zhao, and Saman
Amarasinghe. Helium: lifting high-performance stencil kernels

227

from stripped x86 binaries to halide DSL code. ACM Press,
6 2015. URL: http://dx.doi.org/10.1145/2737924.2737974,
https://doi.org/10.1145/2737924.2737974
doi:10.1145/2737924.2737974.

[46] Gonzalo Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, mar 2001.
https://doi.org/10.1145/375360.375365 doi:10.1145/375360.375365.

[47] Yuto Nishida, Sahil Bhatia, Shahdaj Laddad, Hasan Genc, Yakun Sophia
Shao, and Alvin Cheung. Code transpilation for hardware accelerators.
CoRR, 2023. Available at https://arxiv.org/pdf/2308.06410.pdf.

[48] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross,
Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible
toolkit for sequence modeling. arXiv preprint arXiv:1904.01038, 2019.

[49] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar,
Lambert Pougeum Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri,
Saurabh Sinha, and Reyhaneh Jabbarvand. Lost in translation: A study
of bugs introduced by large language models while translating code.
ICSE, 2024.

[50] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and
Dinakar Dhurjati. Scaling up superoptimization. In Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 297–310, 2016.

[51] Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A Seshia,
and Alvin Cheung. Tenspiler: A verified lifting-based compiler for
tensor operations. In 38th European Conference on Object-Oriented
Programming (ECOOP 2024), 2024.

[52] Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A. Seshia, and
Alvin Cheung. Tenspiler: A Verified-Lifting-Based Compiler for Tensor
Operations (Artifact). Dagstuhl Artifacts Series, 10(2), 2024. URL:
https://drops.dagstuhl.de/entities/document/10.4230/DARTS.10.2.17,
https://doi.org/10.4230/DARTS.10.2.17 doi:10.4230/DARTS.10.2.17.

[53] Saurabh Raje, Yufan Xu, Atanas Rountev, Edward F Valeev, and Saday
Sadayappan. CoNST: Code generator for sparse tensor networks. CoRR,
2024. Available at https://arxiv.org/html/2401.04836v1.

[54] Vikas Raunak, Arul Menezes, and Marcin Junczys-Dowmunt. The
curious case of hallucinations in neural machine translation, 2021.
https://arxiv.org/abs/2104.06683 arXiv:2104.06683.

[55] Joseph Redmon. Darknet: Open source neural networks in c.
http://pjreddie.com/darknet/, 2013–2016.

[56] Christopher D Rosin. Stepping stones to inductive synthesis of low-level
looping programs. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 2362–2370, 2019.

[57] Mazen AR Saghir. Application-specific instruction-set architectures for
embedded DSP applications. Citeseer, 1998.

[58] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural ma-
chine translation of rare words with subword units. arXiv preprint
arXiv:1508.07909, 2015.

[59] Kensen Shi, David Bieber, and Rishabh Singh. Tf-coder: Program
synthesis for tensor manipulations. ACM Transactions on Programming
Languages and Systems (TOPLAS), 44(2):1–36, 2022.

[60] Sunbeom So and Hakjoo Oh. Synthesizing imperative programs from
examples guided by static analysis. In International Static Analysis
Symposium, pages 364–381. Springer, 2017.

[61] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A.
Seshia, and Vijay A. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS, pages 404–415. ACM, 2006.

[62] Adilla Susungi, Norman A Rink, Albert Cohen, Jeronimo Castrillon,
and Claude Tadonki. Meta-programming for cross-domain tensor
optimizations. GPCE, 2018.

[63] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2,
NIPS’14, page 3104–3112, Cambridge, MA, USA, 2014. MIT Press.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[65] Jackson Woodruff, Jordi Armengol-Estapé, Sam Ainsworth, and
Michael FP O’Boyle. Bind the gap: Compiling real software to hardware
fft accelerators. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
pages 687–702, 2022.

[66] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. DISTAL: The dis-
tributed tensor algebra compiler. PLDI, 2022.

[67] Tian Zhao, Alexander Rucker, and Kunle Olukotun. Sigma: Compiling
einstein summations to locatlity-aware dataflow. ASPLOS, 2023.

[68] Vojin Zivojnovic. Dspstone: A dsp-oriented benchmarking methodology.
Proc. Signal Processing Applications & Technology, Dallas, TX, 1994,
pages 715–720, 1994.

228

