
ExeBench: An ML-Scale Dataset of Executable C
Functions

Jordi Armengol-Estapé
jordi.armengol.estape@ed.ac.uk

University of Edinburgh
UK

Jackson Woodruff
J.C.Woodruff@sms.ed.ac.uk
University of Edinburgh

UK

Alexander Brauckmann
alexander.brauckmann@ed.ac.uk

University of Edinburgh
UK

José Wesley de Souza
Magalhães

jwesley.magalhaes@ed.ac.uk
University of Edinburgh

UK

Michael F.P. O’Boyle
mob@inf.ed.ac.uk

University of Edinburgh
UK

Abstract
Machine-learning promises to transform compilation and
software engineering, yet is frequently limited by the scope
of available datasets. In particular, there is a lack of runnable,
real-world datasets required for a range of tasks ranging from
neural program synthesis to machine learning-guided pro-
gram optimization. We introduce a new dataset, ExeBench,
which attempts to address this. It tackles two key issues with
real-world code: references to external types and functions
and scalable generation of IO examples. ExeBench is the first
publicly available dataset that pairs real-world C code taken
from GitHub with IO examples that allow these programs to
be run. We develop a toolchain that scrapes GitHub, analyzes
the code, and generates runnable-snippets of code. We ana-
lyze our benchmark suite using several metrics, and show
it is representative of real-world code. ExeBench contains
4.5M compilable and 700k executable C functions. This scale
of executable, real functions will enable the next generation
of machine learning based programming tasks.

CCS Concepts: • Software and its engineering → Com-
pilers.

Keywords: Code Dataset, Compilers, C, Mining Software
Repositories, Machine Learning for Code, Program Synthesis
ACM Reference Format:
Jordi Armengol-Estapé, Jackson Woodruff, Alexander Brauckmann,
José Wesley de Souza Magalhães, and Michael F.P. O’Boyle. 2022.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MAPS ’22, June 13, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9273-0/22/06. . . $15.00
https://doi.org/10.1145/3520312.3534867

ExeBench: An ML-Scale Dataset of Executable C Functions. In
Proceedings of the 6th ACM SIGPLAN International Symposium on
Machine Programming (MAPS ’22), June 13, 2022, San Diego, CA,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3520312.3534867

1 Introduction
Large datasets have been instrumental in accelerating in-
novation in machine learning deployment from image pro-
cessing [1] to text-generation [2]. In the area of program-
ming languages, we have witnessed a flurry of activity based
around code datasets [3]. These cover many programming
languages and are used for tasks such as code completion [4],
clone detection [5, 6], code translation [7].

However, none are suitable for the tasks of neural compi-
lation [8], decompilation [9] and program synthesis[10, 11].
Here, the key requirement is that the programs are exe-
cutable and cover a diverse range of task representing the
space of programs a compiler is likely to encounter [12] as
anything else is likely to lead to models that do not gener-
alize [4, 13, 14]. Existing datasets for these tasks are either
synthetics [15] or contain too few tasks to cover the range of
tasks such tools will encounter [6]. Synthetic datasets gener-
alize more poorly than real code [16], and we currently lack
a dataset of runnable real code required for many problems.

Anghabench [17] provides 1.04M compilable C functions
scrapped from GitHub, exactly the kind of code that can be
used to train models that generalize [18]. However, while
these programs are useful for code compression and other
static tasks, the existing datasets cannot be used for more
challenging learning tasks that involve benchmark execu-
tion. Anghabench functions often missing externally de-
fined types and function dependencies, are not executable
and do not provide a set of inputs and outputs. ExeBench
addresses this problem by automatically finding external
tyes and functions and producing IO examples for 687,843
functions, enabling tasks ranging from neural synthesis to
machine-learning based program optimization.

50

https://doi.org/10.1145/3520312.3534867
https://doi.org/10.1145/3520312.3534867
https://doi.org/10.1145/3520312.3534867
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3520312.3534867&domain=pdf&date_stamp=2022-06-13

MAPS ’22, June 13, 2022, San Diego, CA, USA J. Armengol-Estapé, J. Woodruff, A. Brauckmann, J.W. de Souza Magalhães, M.F.P. O’Boyle

We scrape GitHub, the largest host of open-source code
in the world [19], isolating deduplicated functions [20] as
separate files that are compilable and executable from a stan-
dard harness. We search the wider code repository for the
appropriate header and library include files which when com-
piled give a correctly functioning executable. We develop a
scalable test generation tool that uses function signatures to
automatically create multiple test input/output pairs without
any external intervention.

In summary, we contribute with:
• ExeBench, the first machine leaning-scale set of exe-
cutable programs in C, providing 700k functions.

• An analysis of the characteristics of ExeBench, show-
ing that it represents a diverse set of code, representa-
tive of GitHub code.

• A methodology for building such datasets that can be
applied to other repositories of C code.

We make the ExeBench dataset and tools available in a
machine learning-friendly format.1

2 Related Work
There has been considerable effort in developing code datasets
and generating appropriate test data.

2.1 Datasets
We can broadly spit existing datasets into those sourced from
competitons and those based on more real-world sources.

Competition Sourced. Due to the difficulties of gener-
ating appropriate input data, many executable code data
sets are sourced from program competitions. Here the input
and outputs are defined as part of the competition and by
construction are guaranteed to be appropriate for the suc-
cessful code entries. CodeNet [6] is a large dataset, but in
the style of POJ-104 [5], focuses on a limited set of problems.
ProgRes [21] uses similar data sources for a neural program
synthesis dataset, attempting to overcome the limited num-
ber of problems by considering sub-regions of programs and
using program slices to select datasets for code sub-regions.

Real-world. A number of projects have set out to source
large quantities of data, from real wold sources such as
Github [22] and other repositories such as SourceForge and
JavaForge [23]. They have created compilable datasets from
Github in Java [24–27], Scala [28] and C [17], and syntheti-
cally in OpenCL [29], Python [30, 31] and C [32]. Gistable
is an executable Python dataset [33] providing 10,259 exe-
cutable snippets from Github. Docable [34] explore the exe-
cutability of online tutorials.
Executable real-world C, however, is more challenging

due to library dependence, global variables and pointers.

1https://github.com/jordiae/exebench

CSNIPPEX [35] generates compilable snippets from Stack-
overflow posts and various works rely on compilable Stack-
overflow snippets for their analyses [36]. The closest related
work is Anghabench [17], a collection containing over one
million C benchmarks created out of open-source reposito-
ries. Each program consists of individual functions extracted
from code mined from Github plus complementary code in-
serted by a type inference engine to solve external function
dependencies that otherwise prevent compilation. Although
compilable, Anghabench programs cannot be executed be-
cause they lack a main routine and input data. This prevents
them from being used for tasks that involve execution and,
as there are no outputs, behavioral equivalence.

2.2 Test Generation
Generating useful input data for C functions is critical for
an executable code dataset. This is a well studied area with
different SMT [37, 38] and symbolic execution-based ap-
proaches [39]. Other techniques use random test generation
to achieve the same aims [40]. While in principle, test gen-
eration is a well studied, in fails in practise as it is either
too slow (SMT) or requires external specification of input
domains. Our approach to input generation is automatic and
scalable, allowing the efficient generation of tests on a large
scale, while still providing significant potential for detecting
certain common errors [41, 42] and obtaining performance
results for generated code.

3 Overview
Figure 1 shows an overview of our methodology. We first ex-
pand macros (1) except include directives and extract the real
definitions (2a) by fixing the missing includes (if required).
As an alternative, parallel approach, we inject synthetic de-
pendencies for dependencies that cannot be found (2b). We
also extract the definition of the function we are considering
itself (2c), and metadata associated to this function (2d). After
having extracted the real and synthetic auxiliary definitions,
we run the IO generation tool for each approach (3a/3b).

This example illustrates the kind of IO we generate:

Listing 1. IO Example
doub le a r e a (doub le a , doub le b)
{

r e t u r n ((f (a) + f (b)) / 2 . 0) ∗ (b − a) ;
}

I npu t : (5 2 . 0 2 7 0 0 6 1 7 9 6 , 8 1 . 5 8 5 5 4 7 6 8 3 1) ,
Output : 1 2 8 3 . 8 6 9 2 0 0 6 8 2 4 7 8

3.1 Terminology
We tackle two main challenges, compilability and executabil-
ity of standalone C functions. For the latter, since functions
may make use of externally defined auxiliary functions or
types, we consider two distinct approaches: synthetic type

51

https://github.com/jordiae/exebench

ExeBench: An ML-Scale Dataset of Executable C Functions MAPS ’22, June 13, 2022, San Diego, CA, USA

Real defs

Function
definition

Synthetic
defs

Metadata

GitHub .c/.h
files with

fixed includes

Compilable
dataset
instance

Real defs

Function
definition

Synthetic
defs

Metadata

Executable
dataset
instance

Real IO

Synthetic IO

Wrapper

1) Expand
macros
except
include

directives

Fix include
paths

Extract
auxiliary

types and
function

definitions

2b) Inject
synthetic defs

2c) Extract
function

definitions

3a) Add real IO

3b) Add synth IO

Assembly

GitHub .c/.h
files

GitHub .c/.h
files with
expanded

macros except
includes

2d) Extract
metadata

2a) Extract real defs

Figure 1. Overview of our method. We first expand macros except include directives. Then, we apply 4 independent, parallel
steps: 2a) Extraction of real auxiliary function definitions, 2b) Injection of synthetic auxiliary function definitions, 2c) Extraction
of function definition (the one of the function we are considering), 2d) Extraction of metadata. With that, we can run the IO
generation tool with both the real auxiliary definitions (3a) and the synthetic ones (3b).

and function declarations, an existing scheme where type
correct function and types declarations are inserted with
no function bodies [17], and real definitions where we find
the appropriate external header files and external C func-
tions and types. Where real definitions are not found, we
inject synthetic type and function declarations to make func-
tions compilable, and synthetic definitions to make functions
executable.

We distinguish between synthetic IO to refer to IO gener-
ated with synthetic auxiliary function definitions and types,
and real IO, IO generated with the real auxiliary function
and type definitions. We generate IO of varying complexity,
distinguishing between simple IO which is IO for a constant
or identity function, and rich IO, in which implementations
need more complexity. Figure 2 shows a simplified Venn
diagram of the subsets of functions considered in this work.

4 Data, Code Collection and Preprocessing
We use the large-scale GitHub Archive dataset as hosted in
Google BigQuery2 and download all .c and .h files. We use
the Enry language identifier3 to discard non-C header files

2https://cloud.google.com/blog/topics/public-datasets/github-on-
bigquery-analyze-all-the-open-source-code
3https://github.com/src-d/enry

and then extract function definitions from each file using
Clang.

After extracting C function definitions, there are two key
challenges - managing dependencies on external functions/-
header files and generating test IO (section 5). For external
dependencies management we experiment both with syn-
thetic and real auxiliary types and functions definitions.

Real Definitions. The ideal approach of building every
repository as originally intended by the developers is not
scaleable as projects have their own mechanism for specify-
ing builds (e.g., repositories relying on following READMEs).
Instead, we iterate over source files and apply heuristics to
find the right include files enabling compilation of as many
functions as possible. To find the appropriate include file, we
build an SQL database with indices for filenames to allow
rapid search and look up.

For each include directive, we check if it is present in the
appropriate directory. For those that are missing: If it is a
missing system include (#include <lib.h>), we remove it
in the hope that functions present in that file not using that
specific library will still be compilable. If it is a missing rela-
tive include (#include "lib.h"), we first check in the same
repository if there exists a header file with the same name,
and change the path accordingly. Otherwise, we check if

52

https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
https://github.com/src-d/enry

MAPS ’22, June 13, 2022, San Diego, CA, USA J. Armengol-Estapé, J. Woodruff, A. Brauckmann, J.W. de Souza Magalhães, M.F.P. O’Boyle

Table 1. Anghabench and GitHub statistics

Dataset Functions Files LOC per function Repositories Duplicated functions
Anghabench 1,039,021 1,039,021 22.42 147 13.64%
GitHub 8,362,855 9,036,556 18.13 386,288 48.73%

Functions

Not
Compilable

Compilable

Real Synthetic

Real
IO

Synthetic
IO

Figure 2. Venn diagram of the sets of functions we consider.
We can make functions compilable either with synthetic
or real declarations. We can make some of the compilable
functions actually executable with IO by injecting synthetic
definitions (aside from declarations) or making use of the
real auxiliary function definitions.

such a file exists in the whole dataset using the SQL database
and link to it. In the frequent case that there are multiples
files with the same name, we prioritize those with the most
stars, based on the assumption they are the most likely.
Table 1 shows statistics of the Anghabench and Github

Archive datasets, before applying any preprocessing.

5 Execution and Unit Test Generation
Our goal is large scale test generation and we trade-off au-
tomation for context sensitivity e.g. some inputs may only
be valid when positive. Capturing such context means we
need either complex analysis or human assistance. Instead,
we use function signatures to guide automatable and scalable
test generation.
In the case of the synthetic approach, we generate 10 IO

pairs per function, with 3 different seeds for the auxiliary
definitions (30 IO in total). In the case of the approach with

the real auxiliary function definitions, we generate 10 IO
pairs per function.

5.1 Automatically Generating Specification Files
from Function Headers

We use a JSON-based description of functions to generate
inputs, based on FACC [43]. We developed a Python frontend
that takes C functions as input and automatically generated
the corresponding JSON files. The JSON IO format describes
the variables that are live at entry and exit at of the function.
It includes several base types: integers uint8, uint16,

uint32, uint64, int8, int16, int32, int64; floats float16,
float32, float64; unit, and string. array and struct are
parametric types. User types should be defined in the context
of these base types. An example IO format description is:

Listing 2. IO Example
{ l i v e i n : [" x " , " y " , . . .] ,

l i v e o u t : [" x " , " a "]
typemap : {

a : " i n t 3 2 " ,
y : " f l o a t 3 2 "
x : " MyComplexClass "
. . .

}
}

Arrays need to have an associated length parameter, which
is the size of the array to generate. While generating arrays
of large size by default would avoid segmentation faults this
would potentially add overhead and we settle in a default
array size of 32. Strings use a standard C string format, with
variable-length, null-terminated inputs.

The generated testing executable takes one argument, a
JSON input file and produces as output a JSON output file.
which specifies bindings between variables and their corre-
sponding values.

5.1.1 Global Variables and Arguments Passed as Ref-
erence. C code relies heavily on global variables and argu-
ments passed as reference (as opposed to by value), which
makes testing more challenging. However, note that our
specification does allow for global variables and arguments
passed as reference to be both generated and evaluated. We
consider all arguments passed as reference as outputs to be
evaluated after the function execution. In addition, in case
global variables used in the function are undefined (that is,
in the case of synthetic dependencies), we consider them as
part of the inputs to be randomly generated in each IO pair.

53

ExeBench: An ML-Scale Dataset of Executable C Functions MAPS ’22, June 13, 2022, San Diego, CA, USA

5.1.2 Simple IO. We define simple IO as the set of IO pairs
that fulfills either one of the following conditions:

• Constant; each different input gives the same output.
For example, if each of the 𝑛 IO pairs has the inputs I:
1, 2, . . . , 𝑛 and the outputs O: 0, 0, . . . 0 it is constant

• Identity:, the output variables have the same value as
before executing the function.

While potentially useful to check correctness in some
cases, simple IO is not useful for e.g. IO-based program syn-
thesis, because the simplest implementation passing the tests
can be a simple return value. However, simple IO has po-
tential to be used to benchmark optimizations that already
have correctness guarantees and do not need IO to verify
behaviour, but to benchmark the execution itself. By design
our tool can generate such simple IO instead of more com-
plex IO depending on the functions, at the expense of being
more scalable to real-world datasets than other possible ap-
proaches.

5.1.3 Rich IO. By rich IO we mean IO that does not fulfill
the simple IO conditions, meaning that a constant or identity
implementation cannot pass the tests. This IO has potential to
be used in IO-guided program synthesis or code generation.

We report and study the typology of generated IO in Sec-
tion 6.

5.1.4 Generating Wrappers. Our IO Generator produces
JSON files with runnable values in them. To actually run a
program, we must also generate a wrapper. The wrapper
uses a C++ JSON libray to load values from JSON files into
variables, then calls a function defining the user code.

We refer to the Supplementary Material for more details
on the specification of our tool.

5.2 Safety of Executing Untrusted Code
In principle, memory leaks and segmentation faults of the
executed code cannot affect the main program (the one get-
ting or testing the IO pairs) because they are executed in
separate processes with timeouts. However, in case of the
code with real dependencies, executing untrusted code could
indeed be unsafe for the host system. That is the reason why
we execute all code in containers with limited permissions.
Prospective users must be aware of this danger when exe-
cuting the code with the real dependencies. In case of the
Anghabench ones, safety is less of a concern because all sys-
tem calls are replaced by dummy functions with the same
signature.

6 Results
We present the results of applying our tool to two large-scale
datasets, Anghabench and GitHub Public Archive, summa-
rized in Table 2.

6.1 Anghabench
Anghabench contains 147 popular projects. Since it only
provides synthetic declarations, we must also synthesize
synthetic function definitions, and generate values for global
variables to make them executable. Using the synthetic ver-
sion of our approach, we generated 294k (28%) executable
functions of which 37k contained rich IO. The approach with
real auxiliary definitions cannot be applied to Anghabench
due to the lack of the original context, but the functions
considered in Anghabench are included in Github (Section
6.2).

6.2 GitHub
Over the total 8.5M extracted functions, around 77% were
compilable with synthetic declarations. Of this 77%, we were
able to make executable around 15% with synthetic auxiliary
function definitions, of which around 16% were executable
with rich IO. In the case of approach with the real auxiliary
functions definitions, around 20% of the functions were com-
pilable, with almost 5% of these functions being executable.
Almost 10% of the executable functions with real definitions
produced rich IO.

6.3 Representativeness
In this section, we study whether the obtained functions and
IO are representative of the real-world distribution of C code.

Distribution of Code Metrics. Figure 3 shows the dis-
tributions of various code complexity metrics on differnet
samples of out extracted executable functions. We compare
the behavior of our executable functions with that of the
larger compilable, but not executable, Github population and
show that are excutable functions match the larger popula-
tion’s characteristics.
The first code complexity metric we examine is the cy-

clomatic complexity, which measures number of linearly
independent paths in a program. We also use the Halstead
complexity metrics that are metrics to measure the effort
of developing a program. Further, we examine the number
of lines of code, the maximum Abstract Syntax Tree width,
maximum Abstract Syntax Tree depth, and the number of
basic blocks on unoptimized LLVM IR.

Figure 3 reveals that our functions are close to the samples
found on GitHub (github-compilable), The distributions of
our executable datasets align with this reference distribu-
tion, albeit the features are slightly smaller, indicating less
complex samples. This is true for the Halstead complexities
and the AST depth. The subsets with simple IO (not anno-
tated with rich) match the reference distribution better for
both the AnghaBench and GitHub subsets in terms of the
complexity metrics, making them close to real-world code.

54

MAPS ’22, June 13, 2022, San Diego, CA, USA J. Armengol-Estapé, J. Woodruff, A. Brauckmann, J.W. de Souza Magalhães, M.F.P. O’Boyle

Table 2. Results in the original Anghabench dataset and in the Github crawling. Here we report results before deduplication
to be closer to the real distribution of code and because real definitions may be different depending on the context (e.g., same
function definition but different headers)

Dataset Method Comp (% over total) Exe (% over comp) Rich IO (% over Exe) Total
Angha Synth 1,039,021 (100%) 294,396 (28.33%) 36,665 (12.45%) 1,039,021
Angha Real 0 0 0
Github Synth 6,566,961 (77.49%) 972,082 (14.80%) 156,717 (16.12%) 8,473,899
Github Real 1,700,356 (20.07%) 83,715 (4.92%) 8,274 (9.88%)

max-ast-width n-bbs n-loc

halstead-program-length halstead-volume max-ast-depth

cyclo-complex halstead-difficulty halstead-effort

1e+02

1e+04

1e+06

1

3

10

30

1

10

100

3
10
30
100
300

10

100

1000

10000

1

10

100

1

10

100

1

10

100

1000

1

10

100

Feature

Q
ua
nt
ity

(lo
g)

Subset
anghabench-executable
anghabench-executable-rich
github-compilable
github-executable
github-executable-rich

Figure 3. Distributions of feature quantities on different subsets of the dataset. AnghaBench and GitHub are the respective
repositories. The GitHub reference distribution is denoted as github-compilable.

Distribution of Code Embeddings. To compare the sam-
ples supported by our toolchain in more complex features,
we use the code embeddings from InferCode [44]. InferCode
is a pre-trained language model that predicts an embedding
vector that captures semantic information of the input source
code. We further use the UMAP algorithm for dimensionality
reduction [45] to reduce the embeddings to a 2-dimensional
space for better visualization.

Figure 4a shows the reduced embeddings of the functions
found in the 10 largest open-source projects of AnghaBench,
colored by project. While we can see that many repositories
share a similar feature space, several projects are dissimilar.
This is most significant for the ffmpeg and qmk-firmware
projects. Indeed, we can think of dissimilarities in the nature
of the code of these two projects.

The distributions of compilable and executable functions
in Figure 4b shows that they overlap, so the executable func-
tions are a representative subset of the functions found in the

10 largest projects in AnghaBench. This supports that our
methodology can indeed be used to make a representative
subset of compilable functions executable.

6.4 Error Analysis and Deduplication
Error Analysis. The most common errors for generating

the synthetic definitions are syntax errors due to unexpanded
C macros, as reported in the original Anghabench paper.
The most common compilation error with the real function
definitions are missing header files that we were unable to
find.

Regarding IO generation, our technique tends to perform
poorer in programs that contain pointer arithmetic opera-
tions and conversions and/or a complex control flow struc-
ture. Figure 5 shows which program features lead to the
lowest percentage values of successfully generated IO pairs.
We can succeed only less than 5% of the programs that carry
out pointer manipulation, as represented by the instructions

55

ExeBench: An ML-Scale Dataset of Executable C Functions MAPS ’22, June 13, 2022, San Diego, CA, USA

3

6

9

0 5 10

Component 1

C
o
m

p
o
n
e
n
t
2

Repository

darwin-xnu

fastsocket

FFmpeg

freebsd

linux

postgres

Provenance

qmk_firmware

reactos

RetroArch

(a) Different repositories.

3

6

9

0 5 10

Component 1

C
o
m

p
o
n
e
n
t
2

Executable

False

True

(b) Toolchain support.

Figure 4. Distribution of function embeddings wrt. different repositories and availability of IO examples.

clang.ContinueStmt
llvm.inttoptr

clang.GotoStmt
clang.LabelStmt

llvm.ptrtoint
llvm.bitcast

llvm.unreachable
clang.UnaryExprOrTypeTraitExpr

clang.ImplicitValueInitExpr
clang.ArraySubscriptExpr

clang.WhileStmt
clang.DoStmt
clang.ForStmt

clang.max-loop-depth
llvm.sub

clang.InitListExpr
clang.BreakStmt

llvm.urem
clang.CStyleCastExpr

llvm.sext

0.000 0.025 0.050 0.075 0.100
Success Rate

St
at
em

en
t/I
ns
tu
ct
io
n

Figure 5. Statements or instructions that lead to lowest
success rates when generating IO pairs. The success rate
is the percentage of functions that are are executable and
have at least one of the given statement or instruction over
the functions that have the statement or instruction and are
compilable. The dashed line represents the geometric mean
accross the success rates of all features.

inttoptr, ptrtoint, and bitcast. The low percentage
of correctly generated IO pairs in the case of programs that
include continue and goto statements and labels seems
to suggest that we are still likely to fail in cases of programs
with more complex control flow structures.

Duplication Analysis. Duplicated and near-duplicated
instances are a common issue in machine learning datasets,
affecting the reliability of the evaluation sets and the use-
fulness of training sets [20, 46, 47]. Here, we searched for

exact duplicates of function definitions after tokenization,
and found that close to 14% of the original Anghabench func-
tions were duplicated, while almost half of the ones extracted
from Github (Table 1). Note that this analysis considered all
extracted functions, including the non-compilable ones.

7 ExeBench
The final dataset, which we call ExeBench, is constructed
after deduplicating the outputs obtained in Section 6.

7.1 Deduplicating and Aggregating Code Datasets
We concatenate both Anghabench and Github dataset and ap-
ply exact deduplication based on function definition strings
after tokenization. Before removal we check that external
function references are identical as it is possible for other-
wise identical functions to refer to external functions with
the same names but different functionality. Table 3 shows the
final statistics of ExeBench after deduplicating the outputs
of Section 6.

7.2 Splits
We apply train-valid-test splitting, so that all researchers
using this dataset can report comparable results and can be
used as an actual benchmark instead of just a dataset. How-
ever, in this case we observe some challenges not present in
more classical ML, related to the fact that not all functions
have the same attributes (e.g., one function might have rich
I/O or have no I/O at all). Thus we create different train, valid
and test sets, ensuring that valid and test have all possible
attributes to ease evaluation.

Table 4 shows the statistics of the different splits.

7.3 Row Fields
func_def C function definition.
func_name C function name.

56

MAPS ’22, June 13, 2022, San Diego, CA, USA J. Armengol-Estapé, J. Woodruff, A. Brauckmann, J.W. de Souza Magalhães, M.F.P. O’Boyle

Table 3. ExeBench stats for each subset after deduplicating and suggested uses

Subset Size Suggested use
Not compilable 735,700 Unsupervised pretraining
Synth compilable 4,189,813 Compilation benchmarking
Real compilable 893,561 Compilation benchmarking
Compilable (synth ∪ real) 4,485,817 Compilation benchmarking
Synth simple IO 644,758 Optimization benchmarking
Real simple IO 43,085 Optimization benchmarking
Synth rich IO 120,148 IO-guided program synthesis, code generation, code search
Real rich IO 4,464 IO-guided program synthesis, code generation, code search
Total functions 5,221,517

Table 4. Exebench splits. Train, valid and test are disjoint. Train-not-compilable and the rest of train sets are disjoint.
Train-synth-simple-IO and train-synth-rich-IO are also disjoint. However, Train-synth-compilable and Train-real-compilable
intersect with all the train subsets with IO.

Split Synth comp Real comp Synth Exe Real Exe Synth Rich IO Real Rich IO Size
train-not-compilable ✗ ✗ ✗ ✗ ✗ ✗ 735,700
train-synth-compilable ✓ ✗ ✗ ✗ ✗ ✗ 4,179,345
train-real-compilable ✗ ✓ ✗ ✗ ✗ ✗ 884,543
train-synth-simple-io ✓ ✗ ✗ ✓ ✗ ✗ 644,758
train-real-simple-io ✗ ✓ ✗ ✗ ✓ ✗ 43,085
train-synth-rich-io ✓ ✗ ✓ ✗ ✓ ✗ 109,920
valid-synth ✓ ✗ ✓ ✗ ✓ ✗ 5,000
valid-real ✗ ✓ ✗ ✓ ✗ ✓ 2,232
test-synth ✓ ✗ ✓ ✗ ✓ ✗ 5,000
test-real ✗ ✓ ✗ ✓ ✗ ✓ 2,232

func_sig C function signature.
path Path in GitHub to the original file the function was

extracted from.
syn_defs Synthetic dependencies (available).
real_defs Real dependencies (if available).
syn_io Synthetic IO (if available).
real_io Real IO (if available).
wrapper C++ wrapper to run the C function.
asm We provide diverse function assemblers (x86, ARM)

with different optimizaton levels (O0, Ofast, Os).

7.4 Availability
We store the data in compressed JSON-L4 files, the same for-
mat used in The Pile [48]. Every function and its attributes
corresponds to one line in a JSON-L file. We plan to upload
the dataset to the Huggingface Datasets[49, 50] Hub, allow-
ing for easy, open access. With the dataset release we also
plan to provide our infrastructure and utilities for actually
running the functions and evaluating them in terms of the
IO pairs.

4https://github.com/leogao2/lm_dataformat

7.5 Applications
Table 3 shows the suggested uses for each of subsets of
ExeBench, including compilation and optimization bench-
marking [51], and IO-guided program synthesis, code gener-
ation, and code search.

8 Conclusions
We present ExeBench, the first real-world ML-scale dataset
of executable C code with IO examples. ExeBench contains
687,843 executable C functions and 4,485,817 compilable C
functions, orders of magnitude more than previous efforts
on open-source C repositories.
We discuss our novel methodology for generating exe-

cutable code benchmarks from software repositories and
demonstrate the the executable functions we extract are rep-
resentative of real-world code.
ExeBench enables application of the latest generation of

data-intensive machine learning models with use cases in-
cluding neural compilation, decompilation, synthesis, and
code evaluation.

57

https://github.com/leogao2/lm_dataformat

ExeBench: An ML-Scale Dataset of Executable C Functions MAPS ’22, June 13, 2022, San Diego, CA, USA

Broader Impact
We do not foresee any unfair usage of this work other than
potential legal and ethical concerns on building models using
other developers’ code, which we believe to be alleviated
by the fact that all the code we collected had already been
processed into a public dataset before and that we include
metadata to locate the original repository and check for
license, if needed.

Acknowledgements
Alexander Brauckmann and JoséWesley de Souza Magalhães
are partly sponsored by Huawei Research. We thank the
reviewers for their insightful comments.

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009. doi: 10.1109/CVPR.2009.5206848.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.
doi: 10.48550/arXiv.2005.14165.

[3] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles
Sutton. A survey of machine learning for big code and naturalness.
ACM Computing Surveys, 51:1–37, 7 2019. doi: 10.1145/3212695. URL
http://dx.doi.org/10.1145/3212695.

[4] Vincent J Hellendoorn, Sebastian Proksch, Harald C Gall, and Ablerto
Bacchelli. When code completion fails: A case study on real-world
completions. ICSE, 2019. doi: 10.1109/ICSE.2019.00101.

[5] Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. Convolutional neural
networks over tree structures for programming language processing.
2016. doi: 10.5555/3015812.3016002.

[6] Ruchir Puri, David S Kung, Wei Zhang, Giacomo Domeniconi, Vladmir
Zolotov, Julian Dolby, Jie Chen, Mihir Choudbury, Lindsey Decker,
Veronika Thost, Saurabh Buratti, Luca nad Pujar, and Ulrich Finkler.
Project codenet: A large-scale AI for code dataset for learning a diver-
sity of coding tasks. Unpublished, 2021. doi: 10.48550/arXiv.2105.12655.

[7] Ming Zhu, Karthik Suresh, and Chandan K Reddy. Multilingual code
snippets training for program translation. AAAI, 2022.

[8] Jordi Armengol-Estapé and Michael O’Boyle. Learning c to x86 trans-
lation: An experiment in neural compilation. In Advances in Pro-
gramming Languages and Neurosymbolic Systems Workshop, 2021. doi:
10.48550/arXiv.2108.07639. URL https://openreview.net/forum?id=
444ug_EYXet.

[9] Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran Yahav. Towards
neural decompilation. CoRR, abs/1905.08325, 2019. doi: 10.48550/arXiv.
1905.08325. URL http://arxiv.org/abs/1905.08325.

[10] Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-
Lezama. Learning to infer program sketches. 2019. doi: 10.48550/
arXiv.1902.06349.

[11] Bruce Collie and Michael FP O’Boyle. Program lifting using gray-box
behavior. In 2021 30th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 60–74. IEEE, 2021. doi:
10.1145/3425898.3426952.

[12] Richard Shin, Neel Kant, Kavi Gupta, CChristopher Bender, Brandon
Trabucco, Rishabh Singh, and Dawn Song. Synthetic datasets for
neural program synthesis. 2019.

[13] Bruce Collie, Jackson Woodruff, and Michael FP O’Boyle. Modeling
black-box components with probabilitic synthesis. GPCE, 2020.

[14] Bruce Collie, Philip Ginsbach, Jackson Woodruff, Ajitha Rajan, and
Michael FP O’Boyle. M3: Semantic api migrations. In 2020 35th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 90–102. IEEE, 2020. doi: 10.48550/arXiv.2008.12118.

[15] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. Deepcoder: Learning to write programs.
2017.

[16] Andres Goens, Alexander Brauckmann, Sebastian Ertel, Chris Cum-
mins, Hugh Leather, and Jeronimo Castrillon. A case study on ma-
chine learning for synthesizing benchmarks. MAPL, 2019. doi:
10.1145/3315508.3329976.

[17] Anderson Faustino da Silva, Bruno Conde Kind, José Wesley
de Souza Magalhães, Jerônimo Nunes Rocha, Breno Campos Fer-
reira Guimarães, and Fernando Magno Quinão Pereira. Anghabench:
A suite with one million compilable c benchmarks for code-size reduc-
tion. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 378–390, 2021. doi: 10.1109/CGO51591.
2021.9370322.

[18] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie,
Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Ya-
sunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David,
Ian Stavness, Wei Guo, Berton A Earnshaw, Imran S Haque, Sara Beery,
Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea
Finn, and Percy Liang. Wilds: A benchmark of in-the-wild distribution
shifts. PMLR, 2021. doi: 10.48550/arXiv.2012.07421.

[19] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy
Zaidman. Lean GHTorrent: Github data on demand. MSR, 2014. doi:
10.1145/2597073.2597126.

[20] Miltiadis Allamanis. The adverse effects of code duplication inmachine
learning models of code. In SPLASH ’19: 2019 ACM SIGPLAN Interna-
tional Conference on Systems, Programming, Languages, and Applica-
tions: Software for Humanity. ACM, 10 2019. ISBN [’9781450369954’].
doi: 10.1145/3359591.3359735. URL http://dx.doi.org/10.1145/3359591.
3359735.

[21] A large-scale benchmark for few-shot program induction and synthe-
sis. PMLR, 2021.

[22] Vadim Markovtsev and Waren Long. Public Git archive: a big code
dataset for all. 2018.

[23] Werner Janjic, Oliver Hummel, Marcus Schumacher, and Colin Atkin-
son. An unabridge source code dataset for research in software reuse.
MSR, 2013. doi: 10.1109/MSR.2013.6624047.

[24] Pedro Martins, Rohan Achar, and Cristina V. Lopes. 50k-c: A dataset
of compilable, and compiled, java projects. 2018. doi: 10.1145/3196398.
3196450.

[25] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. The qualitas corpus: A
curated collection of Java code for empirical studies. 2010. doi: 10.
1109/APSEC.2010.46.

[26] Miltiadis Allamanis and Charles Sutton. Mining source code repos-
itories at massive scale using language modeling. In 2013 10th IEEE
Working Conference on Mining Software Repositories (MSR 2013). IEEE,
5 2013. ISBN [’9781467329361’, ’9781479903450’]. doi: 10.1109/msr.
2013.6624029. URL http://dx.doi.org/10.1109/msr.2013.6624029.

[27] Foyzul Hassan, Shaikh Mostafa, Edmund S L Lam, and Xiaoyin Wang.
Automatic building of java projects in software repositories: A study
on feasibility and challenges. ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2017. doi: 10.1109/
ESEM.2017.11.

[28] Filip Kvrikava, Heather Miller, and Jan Vitek. Scala implicits are
everywhere. OOPSLA, 2019. doi: 10.1145/3360589.

[29] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
Synthesizing benchmarks for predictive modeling. In Proceedings of
the 2017 International Symposium on Code Generation and Optimization,

58

http://dx.doi.org/10.1145/3212695
https://openreview.net/forum?id=444ug_EYXet
https://openreview.net/forum?id=444ug_EYXet
http://arxiv.org/abs/1905.08325
http://dx.doi.org/10.1145/3359591.3359735
http://dx.doi.org/10.1145/3359591.3359735
http://dx.doi.org/10.1109/msr.2013.6624029

MAPS ’22, June 13, 2022, San Diego, CA, USA J. Armengol-Estapé, J. Woodruff, A. Brauckmann, J.W. de Souza Magalhães, M.F.P. O’Boyle

CGO ’17, page 86–99. IEEE Press, 2017. ISBN 9781509049318. doi:
10.1109/CGO.2017.7863731.

[30] Xin Wang, Yasheng Wnag, Yao Wan, Fei Mi, Yitong Li, Pingui Zhou,
Jin Liu, Hao Wu, Xin Jiang, and Qun Liu. Compilable neural code
generation with compiler feedback. CoRR, 2022.

[31] Tamasz Korbak, Hady Elsahar, Marc Dymetman, and German
Kruszewski. Energy-based models for code generation under compil-
ability constraints. CoRR, 2021. doi: 10.48550/arXiv.2106.04985.

[32] Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for
neural program synthesis. NeurIPS, 2021. doi: 10.48550/arXiv.2107.
00101.

[33] Eric Horton and Chris Parnin. Gistable: Evaluating the executability
of python code snippets on github. ICSME, 2018.

[34] Samim Mirhosseini and Chris Parnin. Docable: Evaluating the ex-
ecutability of software tutorials. FSE, 2020. doi: 10.1145/3368089.
3409706.

[35] Valerio Terragni, Yepng Lie, and Shing-Chi Cheung. CSNIPPEX: Au-
tomated synthesis of compilable code snippets from qa sites. ISSTA,
2016. doi: 10.1145/2931037.2931058.

[36] Di Yang, Aftab Hussain, and Cristina Videira Lopes. From query to
usable ode: An analysis of stack overflow code snippets. MSR, 2016.
doi: 10.1145/2901739.2901767.

[37] Rafael Dutra, Jonathan Bachrach, and Koushik Sen. SMTSampler:
Efficient stimulus generation from complex SMT constraints. ICCAD,
2018. doi: 10.1145/3240765.3240848.

[38] Talia Ringer, Dan Grossman, Daniel Shwartz-Narbonne, and Serdar
Tasiran. A solver-aided language for test input generation. OOPSLA,
2017.

[39] Willem Visser, Corina S Pasareanu, and Sarfraz Khushid. Test input
generation with java pathfinder. ISSTA, 2004. doi: 10.1145/1007512.
1007526.

[40] Thomas Lemberger. Plain random test generation with PRTest. In-
ternational Journal on Software Tools for Technology Transfer, pages
871–873, 2021. doi: 10.1007/s10009-020-00568-x.

[41] Evan Maicus, Drumil Patel, Matthew Peveler, and Barbara Cutler. Ran-
dom input and automated output generation in submitty. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science
Education, pages 1372–1372, 2020. doi: 10.1145/3328778.3372685.

[42] Sumukh Sridhara, Brian Hou, Jeffrey Lu, and John DeNero. Fuzz testing
projects in massive courses. L@S, 2016. doi: 10.1145/2876034.2876050.

[43] Jackson Woodruff, Jordi Armengol-Estapé, Sam Ainsworth, and
Michael F P O’Boyle. Bind the gap: Compiling real software to hard-
ware FFT accelerators. PLDI, 2022.

[44] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. Infercode: Self-supervised
learning of code representations by predicting subtrees. In 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pages 1186–1197. IEEE, 2021. doi: 10.1109/ICSE43902.2021.00109.

[45] Leland McInnes, John Healy, and James Melville. Umap: Uniform
manifold approximation and projection for dimension reduction, 2018.
URL https://arxiv.org/abs/1802.03426.

[46] Björn Barz and Joachim Denzler. Do we train on test data? purging
CIFAR of near-duplicates. CoRR, abs/1902.00423, 2019. doi: 10.3390/
jimaging606004. URL http://arxiv.org/abs/1902.00423.

[47] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang,
Douglas Eck, Chris Callison-Burch, and Nicholas Carlini. Deduplicat-
ing training data makes language models better. CoRR, abs/2107.06499,
2021. doi: 10.48550/arXiv.2107.06499. URL https://arxiv.org/abs/2107.
06499.

[48] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe,
Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima,
Shawn Presser, and Connor Leahy. The pile: An 800gb dataset of
diverse text for language modeling. CoRR, abs/2101.00027, 2021. doi:
10.48550/arXiv.2101.00027. URL https://arxiv.org/abs/2101.00027.

[49] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek
Thakur, Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama
Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan
Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor
Sanh, Canwen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp
Schmid, Sylvain Gugger, Clément Delangue, Théo Matussière, Lysan-
dre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Vic-
tor Mustar, François Lagunas, Alexander Rush, and Thomas Wolf.
Datasets: A community library for natural language processing. In
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.48550/arXiv.2109.02846. URL
https://aclanthology.org/2021.emnlp-demo.21.

[50] Quentin Lhoest, Albert Villanova del Moral, Patrick von Platen,
Thomas Wolf, Mario Šaško, Yacine Jernite, Abhishek Thakur, Lewis
Tunstall, Suraj Patil, Mariama Drame, Julien Chaumond, Julien Plu,
Joe Davison, Simon Brandeis, Victor Sanh, Teven Le Scao, Kevin Can-
wen Xu, Nicolas Patry, Steven Liu, Angelina McMillan-Major, Philipp
Schmid, Sylvain Gugger, Nathan Raw, Sylvain Lesage, Anton Lozhkov,
Matthew Carrigan, Théo Matussière, Leandro von Werra, Lysandre
Debut, Stas Bekman, and Clément Delangue. huggingface/datasets:
1.15.1, November 2021. URL https://doi.org/10.5281/zenodo.5639822.

[51] Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler,
Michael FP O’Boyle, and Hugh Leather. Programl: A graph-based pro-
gram representation for data flow analysis and compiler optimizations.
In International Conference on Machine Learning, pages 2244–2253.
PMLR, 2021. doi: 10.48550/arXiv.2003.10536.

59

https://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1902.00423
https://arxiv.org/abs/2107.06499
https://arxiv.org/abs/2107.06499
https://arxiv.org/abs/2101.00027
https://aclanthology.org/2021.emnlp-demo.21
https://doi.org/10.5281/zenodo.5639822

	Abstract
	1 Introduction
	2 Related Work
	2.1 Datasets
	2.2 Test Generation

	3 Overview
	3.1 Terminology

	4 Data, Code Collection and Preprocessing
	5 Execution and Unit Test Generation
	5.1 Automatically Generating Specification Files from Function Headers
	5.2 Safety of Executing Untrusted Code

	6 Results
	6.1 Anghabench
	6.2 GitHub
	6.3 Representativeness
	6.4 Error Analysis and Deduplication

	7 ExeBench
	7.1 Deduplicating and Aggregating Code Datasets
	7.2 Splits
	7.3 Row Fields
	7.4 Availability
	7.5 Applications

	8 Conclusions
	References

