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Abstract
Domain-specific languages (DSLs) promise a significant per-
formance and portability advantage over traditional lan-
guages. DSLs are designed to be high-level and platform-
independent, allowing an optimizing compiler significant
leeway when targeting a particular device. Such languages
are particularly popular with emerging tensor algebra work-
loads. However, DSLs present their own challenge: they re-
quire programmers to learn new programming languages
and put in significant effort to migrate legacy code.
We present C2TACO, a synthesis tool for synthesizing

TACO, a well-known tensor DSL, from C code. We develop a
guided enumerative synthesizer that uses automatically gen-
erated IO examples and source-code analysis to efficiently
generate dense tensor algebra code. C2TACO is able to syn-
thesize 95% benchmarks from a tensor benchmark suite, out-
performing an alternative neural machine translation tech-
nique, and demonstrates substantially higher levels of accu-
racy when evaluated against two state-of-the-art existing
schemes, TF-Coder and ChatGPT. Our synthesized TACO
programs are, by design, portable achieving significant per-
formance improvement when evaluated on a multi-core and
GPU platform.

CCS Concepts: • Software and its engineering→ Source
code generation; Domain specific languages.

Keywords: Program Lifting, Synthesis, TACO, Tensor Alge-
bra
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1 Introduction
In the last decade, we have witnessed a dramatic increase
in machine learning (ML) use in applications ranging from
cloud computing to edge devices [45]. ML workloads are
dominated by tensor code [60], leading to large-scale ef-
forts aimed at improving its performance [67]. Dense tensor
algebra is highly parallel, allowing efficient hardware ex-
ploitation across platforms. However, extracting effective
parallelism from existing languages is difficult with current
compiler technology. This language/compiler failure has led
to the growth of domain-specific languages (DSLs) aimed at
efficient linear algebra e.g., Diesel [27], TACO [37]. These
DSLs deliver excellent cross-platform performance outper-
forming existing approaches [38].
Accessing such performance is straightforward for new

applications: just write your program in the appropriate DSL.
However, for legacy programs, it is more problematic with
the programmer responsible for both rewriting sections in
the new DSL and reintegration with the existing application.
As DSLs continuously evolve, this rewritingmust be repeated
several times throughout the lifetime of the application. This
is costly and error-prone, presenting a serious barrier to
existing applications to harness hardware performance.

1.1 Existing Techniques
Rewriting is a significant issue and there are a number of dif-
ferent approaches aimed at automatically porting programs
to access hardware performance without programmer effort.

API Matching: Rather than translate programs into high
level-DSLs, some techniques aim to match and replace sec-
tions of user code with fast libraries. For example, Ginsbach
et al. [30], De Carvalho et al. [24], and Martínez et al. [44]
propose schemes to discover specific code patterns, such
as matrix multiplication, and replace them with accelerator

42

https://orcid.org/0000-0003-2767-1130
https://orcid.org/0000-0003-2650-9596
https://orcid.org/0000-0001-9032-7661
https://orcid.org/0000-0003-1619-5052
https://doi.org/10.1145/3624007.3624053
https://doi.org/10.1145/3624007.3624053


GPCE ’23, October 22–23, 2023, Cascais, Portugal José Wesley de Souza Magalhães, Jackson Woodruff, Elizabeth Polgreen, and Michael F. P. O’Boyle

calls. However, these matching tools are often brittle and can-
not be extended. They require retooling whenever the target
API changes, which makes such approaches non-portable.

Program Lifting via Synthesis: There are several lifting
approaches based on program synthesis, i.e., algorithms for
generating programs from specifications. Synthesis is used
directly to lift legacy code in the work by Kamil et al. [34],
where the user defines the region of code to lift. However,
a compiler from the program source to the internal format
and a decompiler to the high-level DSL have to be provided,
limiting the applicability of this approach to new DSLs and
legacy software. The synthesis used in this lifting is reliant
on SMT solvers to guarantee correctness and drive search.
This means these techniques cannot be easily applied to the
benchmarks we tackle in our paper, which, owing to point-
ers, and unbounded tensors and loops, are too complex for
the state-of-the-art SMT-solver driven software verification
tools to reason about. We attempt to verify bounded correct-
ness for some of our synthesized code, but even for simple
benchmarks, we cannot verify correctness for tensors of size
more than 10 × 10 × 10 within a timeout of 1 hour. This
makes this verification impossible to embed into a synthesis
loop where we check thousands of candidates. Our synthesis
must use alternatives like observational equivalence [22] in
order to achieve the necessary scalability.

Neural Machine Translation (NMT): Language mod-
els have proved useful in translation/transpilation tasks. In
the work by Roziere et al. [55], an unsupervised Java to C#
model is learned using a sequence-to-sequence transformer.
It is shown to be reasonably accurate, however, like most
NMT techniques, it requires a large corpus of source and
target code which is not available for emerging DSLs where
most source programs do not have a corresponding domain-
specific representation.

1.2 Our Approach
This paper presents C2TACO, a synthesis tool for lifting
dense tensor code written in C to TACO. We propose a
guided enumerative synthesis method to generate TACO
programs based on automatically generated IO examples.
We use source code analysis to retrieve features from the
original programs and use them as search aids during syn-
thesis.

We compared the performance of C2TACO against a neu-
ral machine translation approach and two state-of-the-art
existing schemes, TF-Coder [59] and ChatGPT [48]. When
evaluated on a suite of tensor benchmarks, C2TACO is able
to synthesize 95% of the programs, demonstrating consider-
ably higher accuracy than the other techniques (10%, 32%
and 24% respectively). Because they are portable, our lifted
TACO programs achieve significant performance improve-
ments over the original implementation when evaluated on

for (i= 0; i<N; i++){
for (k = 0; k<N; k++){

sum = sum + X[i][k]*b[k];
}
a[i] = sum + c[i];

}

Figure 1. C implementation of matrix vector product and
summation.

a multi-core (geo-mean 1.79x) and GPU (geo-mean 24.1x)
platform.

This paper makes the following contributions:
• A guided program synthesis technique that discovers
and lifts legacy C code to TACO, a domain-specific
tensor language based on behavioral equivalence and
on the original program structure.
• An extensive evaluation against existing synthesizer
and neural machine translation models, showing that
our approach has higher coverage and is more accurate
than existing approaches.

2 Motivation
In this section we briefly introduce TACO and describe how
and why we lift C to TACO.

2.1 TACO
TACO [38] is a high-level programming language for ten-
sor contractions. A tensor is a generalization of a matrix
(order 2) to higher orders. It supports tensor expressions of
unbounded length and supports tensors of unbounded order.
The core TACO language is based on Einstein summation
notation (Einsum) allowing concise representation of tensor
computation using tensor index notation. It has been used
in other frameworks including TVM [19].
Consider the matrix-vector product and summation ex-

ample: 𝑎𝑖 = Σ𝑘𝑋𝑖,𝑘𝑏𝑘 + 𝑐𝑖 .∀𝑖 . In C a simple sequential imple-
mentation would result in the code shown in Figure 1. While
straightforward, targeting this code for different platforms
such as multi-cores or GPUs would require significant code
restructuring. Writing the example in TACO gives:

𝑎(𝑖) = 𝑋 (𝑖, 𝑘) ∗ 𝑏 (𝑘) + 𝑐 (𝑖).
This is nearer the original formulation and, crucially, does
not include any assumptions about whether the platform is
sequential or parallel. The TACO compiler takes this program
as input and generates platform-specific optimized code.

2.2 Example
We take existing legacy C code, lift it to TACO, and then
use TACO’s code generation abilities to target diverse, high-
performance platforms. Consider the program in Figure 2.
This is a C function from the DSPStone benchmark suite [72]
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void matrix1(int X, int Y, int Z, int* A, int* B, int* C)
{
  int* p_a = &A[0];
  int* p_b = &B[0];
  int* p_c = &C[0];
  int i, f;
  int k;
  for (k = 0; k < Z; k++) {
     p_a = &A[0];
     for (i = 0; i < X; i++) {
        p_b = &B[k * Y];
        *p_c = 0;
        for (f = 0; f < Y; f++)
           *p_c += *p_a++ * *p_b++;

        (void)*p_c++;
      }

}
  }
}

#pragma omp parallel for schedule(runtime)
for (int32_t i = 0; i < b1_dimension; i++) {
   for (int32_t j = 0; j < c1_dimension; j++) {
      int32_t ja = i * a2_dimension + j;
      int32_t tka_val = 0;
      for (int32_t k = 0; k < c2_dimension; k++) {
         int32_t kb = i * b2_dimension + k;
         int32_t kc = j * c2_dimension + k;
         tka_val += b_vals[kb] * c_vals[kc];
      }
      a_vals[ja] = tka_val;
    }
  }

__global__
void  matrix1(taco_tensor_t * a, taco_tensor_t * b,
              taco_tensor_t * c){

  int32_t i = blockIdx.x * 256 + (threadIdx.x % 256);
  if (i >= b1_dimension || threadIdx.x >= 256)
    return;

  for (int32_t j = 0; j < c1_dimension; j++) {
     int32_t ja = i * a2_dimension + j;
     int32_t tka_val = 0;
     for (int32_t k = 0; k < c2_dimension; k++) {
        int32_t kb = i * b2_dimension + k;
        int32_t kc = j * c2_dimension + k;
        tka_val = tka_val + b_vals[kb] * c_vals[kc];
     }
     a_vals[ja] = tka_val;
  }
}

C2TACO TACO
Compiler

CPU

GPU

a(i,j) = b(i,k) * c(j,k)
TACO Index Expression

C Code

CUDA Code

Optimized C Code

Figure 2. Lifting C code to TACO using C2TACO. Given a program implemented in C, C2TACO generates a equivalent program
written in TACO tensor index notation which the TACO compiler can use to produce high-performance code targeting a
variety of hardware platforms.

which makes use of post-increment pointer arithmetic to
target the addressing modes found in DSP processors. Al-
though the pointers are a hindrance to understanding, this
program is in fact matrix multiplication.
C2TACO uses automatically-generated input/output ex-

amples as a specification for an enumerative synthesis algo-
rithm. C2TACO uses information about the C program to
guide a search through the TACO grammar in a type-directed
template-based enumerative fashion and produces the TACO
code shown in Figure 2. As well as being higher-level and
easier to read than the original C code, the synthesized TACO
program can be optimized and targeted at different platforms.

Figure 2 shows the code generated from tensor index no-
tation for a multi-core CPU and an NVIDIA GPU. For the
CPU, the TACO compiler generates OpenMP code with a
dynamic runtime schedule policy. So in effect, lifting is an
automatic parallelization method for certain C programs. For
the NVIDIA GPU, the TACO compiler generates CUDA code
(also shown in Figure 2). Although, the code is syntactically
distinct from the OpenMP version, the TACO compiler again
exploits parallelism with implicit concurrence across all of
the threads executing the shown kernel.

2.3 Validity
Our synthesized TACO programs are demonstrated to have
observational equivalence with the original programs in

C. We also manually inspect the synthesized code. Proving
these programs are equivalent is a challenging task due to the
unbounded loops and data structures and pointers present in
the code. Using CBMC [39], a model checker for C programs,
we are able to verify three representative benchmarks using
very small loop bounds and tensors (in one case, we can only
verify up to a loop bound of 10 within a timeout of one hour).
Full verification of synthesized code is an open challenge
and out of the scope of this paper.

3 Overview
Figure 3 shows our overall approach. We summarize the
pipeline of C2TACO and describe the key components in
sections 4 and 5 followed by an extensive evaluation (Section
7).

Given a program 𝑃 written in C, we first detect the pro-
gram sections 𝐾 that are suitable for lifting using neural
program classification. Once we have extracted the candi-
date regions, we generate input-output (IO) examples which
are then used as a specification for our synthesis scheme. Our
system performs a series of static code analysis to extract
relevant features from 𝐾 . We then search the TACO gram-
mar for equivalent programs that satisfy the IO specification
using the features of 𝐾 to prune the program space. Once we
have identified a suitable equivalent TACO program 𝑇 , we

44



GPCE ’23, October 22–23, 2023, Cascais, Portugal José Wesley de Souza Magalhães, Jackson Woodruff, Elizabeth Polgreen, and Michael F. P. O’Boyle

Figure 3. Architecture of C2TACO.

lower it to the target platform and insert it into the original
program for execution.

3.1 Classification
We take as input general-purpose programs that perform
varied computations and perform lifting to a domain-specific
language for tensor contractions. Because we cannot express
general computation in TACO, there is a need to identify
the code regions that can be lifted and accelerated. We use
prior work in neural program classification [69] to determine
which parts of the program represent tensor operations.

3.2 IO Generation
Our synthesizer is driven by a specification of observational
equivalence (i.e., randomly generated input-output exam-
ples). We generate 10 input-output examples. Whilst this
means that we cannot guarantee absolute equivalence of the
synthesized and source code, it allows our synthesis to scale
to programs too complex to be reasoned about by the SMT
solvers that drive other lifting techniques [17].

3.3 Lifting via Synthesis
Once we have the IO examples of the code to lift, we ex-
plore the space of TACO programs using enumeration of
templates over TACO’s grammar to generate programs that
may be equivalent to the original C program. We execute
each candidate on the IO samples to see if it is equivalent.
The Enumerative Template Synthesis algorithm is described
in Section 4. Given the unbounded size of the TACO program
space, this can lead to excessive synthesis time. We, there-
fore, introduce a compiler tool that extracts a set of features

from the original C program and use it to guide search, as
described in Section 5.

3.4 Lowering
Once we have a suitable candidate TACO program, we then
compile it to the target platform using TACO’s platform-
specific optimizing compilation. In this paper, we investigate
multi-core and GPU targets. The generated code is then
patched into the original calling program and evaluated on
the target platform.

4 Enumerative Template Synthesis
The task of automatically lifting C to TACO can be defined as
a formal program synthesis problem. That is, given a source
program 𝑃𝐶 : ®𝑥 → ®𝑦, which is written in C, we wish to find
an equivalent program 𝑃𝑇 : ®𝑥 → ®𝑦, written in TACO, such
that the specification ∀𝐼 ∈ ®𝑥 .𝑃𝐶 (𝐼 ) = 𝑃𝑇 (𝐼 ), i.e., the TACO
program behaves identically to the C program on all possible
inputs.
We use a bottom-up enumerative synthesis algorithm to

enumerate template TACO programs, i.e., TACO programs
that use symbolic variables in place of all tensors and con-
stants. We then check whether there is a valid substitution of
inputs and constant literals for these symbolic variables that
satisfies the specification. The enumeration of our algorithm
is based on classic algorithms in the literature [9, 66], while
the use of a sub-procedure to instantiate concrete variable
names and constant literals is based on CEGIS(T) [3].
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4.1 The Grammar
Our synthesis algorithm enumerates through a grammar 𝐺 ,
shown in Figure 4, which defines a search space of possible
template TACO programs. The grammar 𝐺 is defined as
a set of nonterminal symbols 𝑁𝑇 , terminal symbols, and
production rules 𝑅. For each rule 𝑟 ∈ 𝑅, |𝑁𝑇 | indicates the
number of non-terminal symbols in the rule. We refer to
the nonterminal symbols on the right-hand side of a rule in
the order they appear as 𝑁𝑇0, 𝑁𝑇1, . . .. For example, for the
production rule ⟨PROGRAM⟩ ::= ⟨TENSOR⟩ = ⟨EXPR⟩, the
nontermimals are 𝑁𝑇0 = ⟨TENSOR⟩ and 𝑁𝑇1 = ⟨EXPR⟩, and
|𝑁𝑇 | = 2.
The grammar includes symbolic constants and symbolic

tensor IDs. When we test the program, we substitute these
IDs and symbolic constants with input variables and con-
stants from the source program and test all valid substitu-
tions until we find a program that satisfies the specification.
We limit our grammar to 4 index variables, which limits the
number of tensor dimensions we can reason about to 4.

⟨PROGRAM⟩ ::= ⟨TENSOR⟩ = ⟨EXPR⟩

⟨TENSOR⟩ ::= ⟨ID⟩ ( ⟨INDEX-EXPR⟩ ) | ⟨ID⟩

⟨INDEX-EXPR⟩ ::= ⟨INDEX-VAR⟩
| ⟨INDEX-VAR⟩, ⟨INDEX-EXPR⟩

⟨INDEX-VAR⟩ ::= 𝑖 | 𝑗 | 𝑘 | 𝑙

⟨EXPR⟩ ::= ⟨EXPR⟩ + ⟨EXPR⟩
| ⟨EXPR⟩ - ⟨EXPR⟩
| ⟨EXPR⟩ * ⟨EXPR⟩
| ⟨EXPR⟩ / ⟨EXPR⟩
| ⟨CONSTANT ⟩
| ⟨TENSOR⟩

⟨ID⟩ ::= 𝑇0 | 𝑇1 | 𝑇2 | . . .

⟨CONSTANT ⟩ ::= 𝐶0 | 𝐶1 | 𝐶2 | . . .

Figure 4. TACO grammar.

4.2 Specification
Given a source function 𝑃𝐶 : ®𝑥 → ®𝑦, we wish to find an equiv-
alent TACO function 𝑃𝑇 : ®𝑥 → ®𝑦 such that ∀𝐼 ∈ ®𝑥 .𝑃𝐶 (𝐼 ) =
𝑃𝑇 (𝐼 ). Checking this equivalence is undecidable in general,
however, due to the lack of data-dependent control-flow in
TACO programs, it is sufficient in almost all cases to check
observational equivalence.

We extend the method set out in FACC [69], where inputs
are randomly generated according to manually given con-
straints dictating the length of arrays and favoring smaller
values to make evaluation faster. We constrain arrays to be
of size 4096, and fix tensor-dimensions to be equal (e.g., a
2-dimensional tensor is of size 64 × 64).

A single input-output example 𝐼 ,𝑂 consists of a set of ran-
domly generated arguments 𝐼 = (𝑖1, . . . 𝑖𝑚), corresponding

to the input parameters ®𝑥 = (𝑥1, . . . , 𝑥𝑚), and an output 𝑂 =

𝑃𝐶 (𝑖1, . . . , 𝑖𝑚), We generate 10 input-output examples which
form a specification: 𝜙𝐼𝑂 = {(𝐼 ,𝑂)1, . . . , (𝐼 ,𝑂)10} A program
𝑃𝑇 satisfies the specification 𝜙𝐼𝑂 iff ∀(𝐼 ,𝑂) ∈ 𝜙𝐼𝑂 .𝑃𝑇 (𝐼 ) = 𝑂 .
To determine this in practice, we run 𝑃𝑇 using the TACO
Python API, checking if the behavior matches the corre-
sponding outputs.

4.3 Template Enumeration
We implement bottom-up enumeration i.e., we enumerate
templates starting with the shortest first. We define the
length of a template as the number of references to tensors or
constants in the template, e.g., the template 𝑇0 [𝑖] = 𝑇1 [𝑖] + 2
has length 3 because it refers to 𝑇0, 𝑇1 and 2.
We enumerate templates as shown in Algorithm 2, by

iterating through production rules until we have found all
possible complete templates of length 1 in the grammar. We
then increase the length and repeat the process, using the
previously enumerated templates as building blocks, until
we have hit the maximum user-given length. Each time the
length increases, we add a new tensor ID and a new symbolic
constant to the set of candidate templates. This is shown in
Algorithm 1.

We discard any invalid candidates during enumeration,
i.e., templates that do not type check or are unsupported
by TACO. More specifically we discard: any candidate that
iterates over two different dimensions with the same index
variable (e.g., 𝑇0 (𝑖, 𝑖)); any candidate where the same tensor
appears more than once in a program with different orders
(e.g.: 𝑇0 (𝑖) = 𝑇1 (𝑖) ∗ 𝑇1 (𝑖, 𝑗)); and any candidate where the
same tensor appears on both sides of an assignment (e.g.:
𝑇0 (𝑖, 𝑗) = 𝑇0 (𝑖, 𝑗) +𝑇1 ( 𝑗, 𝑘)).

4.4 Instantiating Templates
After we have generated all templates of length 𝐿, we check
whether any of these templates generate programs that sat-
isfy the specification, 𝜙𝐼𝑂 (see Section 4.2). To do this, we
enumerate through all substitutions that map all symbolic
constants in the candidate program to concrete values, and
all tensor IDs to inputs in the specification, until we find
a substitution that gives us a TACO program that satisfies
the specification. This is shown in Algorithm 2. We limit the
concrete constant values to constants present in the source
program.

We check all possible substitutions until we find a substi-
tution that results in a complete TACO program that satisfies
the specification, which is checked by the check procedure.
Although checking all possible substitutions has 𝐿! com-
plexity for a template of length 𝐿, 𝐿 is typically small (< 5).
We check the templates of length𝑀𝐴𝑋 before any shorter
templates, as this is the likely length of the target program.
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Algorithm 1: Enumerative Template Synthesis.
The subprocedures instantiate and completeRule are
shown in Algorithm 2.
input : source code 𝑃𝐶 , grammar 𝐺 , max length 𝐿
output :candidate program, or no solution
Algorithm synthesize(𝑃𝐶 , 𝐺 , 𝐿)

short ← ∅; // set of short candidates

long ← ∅; // set of long candidates

𝜙𝐼𝑂 ← generateSpec(𝑃𝐶 );
for 𝑙 in 1 . . . 𝐿 do

short ← 𝑠ℎ𝑜𝑟𝑡 ∪ newTensor () ∪ newCons();
while 𝑡𝑟𝑢𝑒 do

𝑛𝑆 ← ∅ ; // new short candidates

𝑛𝐿 ← ∅ ; // new long candidates

for 𝑅𝑢𝑙𝑒 ∈ 𝐺 do
for 𝑝 ∈ completeRule(𝑠ℎ𝑜𝑟𝑡, 𝑅𝑢𝑙𝑒) do

if 𝐿𝑒𝑛𝑔𝑡ℎ(𝑝) = 𝐿 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑝) then
𝑛𝐿 ← 𝑛𝐿 ∪ 𝑝;

else if 𝐿𝑒𝑛𝑔𝑡ℎ(𝑝) < 𝐿 ∧ 𝑣𝑎𝑙𝑖𝑑 (𝑝)
then
𝑛𝑆 ← 𝑛𝑆 ∪ 𝑝 ;

if 𝑛𝑆 ⊆ 𝑠ℎ𝑜𝑟𝑡 ∧ 𝑛𝐿 ⊆ 𝑙𝑜𝑛𝑔 then break;
if 𝑙 = 𝐿 then

long ← long ∪ 𝑛𝐿;
else

short ← short ∪ 𝑛𝑆 ∪ 𝑛𝐿 ;

for 𝑝 ∈ 𝑙𝑜𝑛𝑔, 𝑠ℎ𝑜𝑟𝑡 do
𝑃𝑇 , 𝑟𝑒𝑠𝑢𝑙𝑡 ← instantiate(𝑝, 𝜙𝐼𝑂 );
if result then return 𝑃𝑇 ;

return no solution

5 Synthesis Guided by Code Analysis
The search space of possible TACO templates is large, and
so, in C2TACO, we use program analysis to focus the scope
of the synthesis search, prioritizing candidates that are more
likely to be correct. In particular, we use heuristics to estimate
the correct TACO template length (section 5.1), the correct
dimensions (section 5.2) and the operators (section 5.3).

5.1 TACO Program Length
The length of a TACO program is related to the number
of array/pointer references and constants in the original C
code. However, temporary variables to capture common sub-
expressions and mutable arrays mean that there is no direct
correspondence. Fixing the size of the target TACO program
reduces the search space because we only have to enumerate
candidates once.
To determine the range of sizes C2TACO explores, we

focus on the definition of the output array and examine the
number of input arrays, or uses [23]. At each definition, we

Algorithm 2: Subprocedures. Note 𝑒.{𝑥 ↦→ 𝑦} de-
notes the result of the proper substitution of the ex-
pression 𝑥 by the expression 𝑦 in the expression 𝑒 .
Procedure completeRule(𝑠ℎ𝑜𝑟𝑡, 𝑅𝑢𝑙𝑒)

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 ← ∅;
for 𝑝 ∈ 𝑠ℎ𝑜𝑟𝑡 do

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑅𝑢𝑙𝑒.{𝑁𝑇0 ↦→ 𝑝};
if |𝑁𝑇 | ∈ 𝑅𝑢𝑙𝑒 = 2 then

for 𝑞 ∈ 𝑠ℎ𝑜𝑟𝑡 do
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑅𝑢𝑙𝑒.{𝑁𝑇1 ↦→ 𝑞};

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 ← 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 ∪ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
return 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠

Procedure instantiate(𝑝, 𝜙𝐼𝑂 , 𝑃𝐶 )
𝑋 ← getInputParams(𝑃𝐶 );
𝐾 ← getConstants(𝑃𝐶 );
𝑇 ← getTensors(𝑝);
𝐶 ← getConstantSymbols(𝑝);
for 𝑥, 𝑡 ∈ cartesianProduct (𝑋,𝑇 ) do

for 𝑘, 𝑐 ∈ cartesianProduct (𝐾,𝐶) do
𝑟𝑒𝑠𝑢𝑙𝑡 ← check(𝑝.{𝑡 ↦→ 𝑥}.{𝑐 ↦→ 𝑘}, 𝜙𝐼𝑂 )
if 𝑟𝑒𝑠𝑢𝑙𝑡 then return
𝑟𝑒𝑠𝑢𝑙𝑡, 𝑝.{𝑡 ↦→ 𝑥}.{𝑐 ↦→ 𝑘} ;

iteratively build a set of variables used by that definition. We
use reaching analysis to disambiguate between different ref-
erences to the same (mutable) variables. We then reduce the
constructed set in the presence of summations or reductions.
In C, when writing a reduction or summation, a variable
appears on both sides of an assignment but only once in
the TACO program. For this reason, we apply simple data
dependence analysis to check if there is a recurrence. If there
is, we do not count it twice.

For example, in Figure 1, we have the use set sum, X, b,
c for the the output array a. This is reduced to X, b, c after
detecting the reduction on sum to give 4 (a, X, b, c) as the
predicted number of tensors in the TACO program.

5.2 Tensor Dimensions
C programs frequently contain linearized arrays: where a
single pointer is used to represent a multi-dimensional tensor.
However, in TACO dimensions are explicit, and searching
over all possible dimensions is costly. To address this, we
apply the dataflow analysis defined in [29] to recover arrays
from pointer structures, and then apply delinearization [47]
and determine the highest dimension array.
As an example, consider the program in Figure 2. After

applying dataflow analysis to *p_c, we get p_c[𝑍 ∗ 𝑘 + 𝑖].
Let 𝑛 be the dimensionality of the recovered C array and
𝑚 be the dimension of the enclosing loop nest 𝐽 . Here 𝑛 =

1,𝑚 = 3. The loop iterators are represented by a column
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vector 𝐽 = [𝑘, 𝑖, 𝑓 ]𝑇 , and𝑈 𝐽 is the affine expression for the
array access [𝑍 ∗ 𝑘 + 𝑖]:

𝑈 𝐽 = [𝑍, 1, 0]

𝑘

𝑖

𝑓

 = [𝑍 ∗ 𝑘 + 𝑖]
We now delinearize by constructing a transformation 𝑆 , such
that 𝑆𝑈 gives a matrix of 1’s and 0’s. For our example 𝑆 =

[()/𝑍, ()%𝑍 ]. For details of this step, we refer the reader to
the paper [47]. We apply the transformation to give:

𝑆𝑈 𝐽 =

[
()/𝑍
()%𝑍

]
[𝑍, 1, 0] 𝐽 =

[
1 0 0
0 1 0

]
𝐽

This gives us a 2D delinearized array access 𝑝_𝑐 [𝑘, 𝑖], so
we begin our search for TACO programs using 2D tensors.

5.3 Operator Analysis
Finally, we use the source code to predict which operators are
likely to be included in the target program. We do this based
on a straightforward analysis of the Abstract Syntax Tree of
the source code, which counts the number of appearances
of each operator type. This effectively reduces the search
space of possible TACO programs by eliminating unlikely
combinations of operators.

6 Experimental Methodology
To evaluate C2TACO we compared its performance against
other techniques. We implemented a simple version of the
synthesis process described in Section 4 and an alternative
approach based on neural machine translation. In addition,
we consider an existing large language model ChatGPT and
IO-based synthesizer, TF-Coder.

6.1 Alternative Approaches
ETS. C2TACO uses the synthesis algorithm described in

Section 4 combined with the heuristics described in Section 5.
To evaluate the contribution of the heuristics in C2TACO, we
compare to the most basic enumerative template synthesis
algorithm described in Section 4 (without any heuristics),
which we refer to as ETS.

Neural Machine Translation. NMT converts text se-
quences from one language to another by means of a deep
neural network and has shown positive results on code tasks.
We therefore frame the task of lifting C to TACO as a neural
machine translation problem. We train a Transformer [68]
that given a C input sequence minimizes the edit distance be-
tween the predicted and ground-truth TACO. Once trained,
then, given an unseen C program, the model will generate
the most likely equivalent TACO program.
The main challenge for any new DSL is the availability

of training data. To overcome this, we generate a synthetic
dataset based on the TACO grammar shown in Figure 4.
We compile the synthetically generated TACO programs to
generate the equivalent C programs. We limit our synthetic

dataset to programs that contain a maximum of 5 tensors
of no more than 4 dimensions, and where all datatypes are
integers.

We enumerate this space in a bottom-upmanner, similar to
the enumeration performed by our synthesis algorithm, and
use testing to eliminate semantically equivalence programs.
Since TACO-generated programs contain details that are
unlikely to be present in real-world tensor kernels such as
memory allocation, we modify the clang compiler to extract
only the kernel signature and computation of the program
for our equivalent C program.
We generate 800K pairs of C program and TACO expres-

sions of which we separated 5K for validation, 5K for test,
and the remaining were used for training. The trained model
is a Transformer with 6 encoders and 6 decoders with 16
attention heads and an embedding size fixed at 1024.

6.2 Existing Approaches
TF-Coder. TF-Coder [59] is an open-source publicly avail-

able program synthesizer. It takes a single input-output ex-
ample as source and generates a corresponding TensorFlow
program. Although the search space of TF-Coder is not de-
fined by the same grammar we considered in our synthesis
methods, we compare C2TACO against TF-Coder because
both synthesize programs from IO examples and operate on
the domain of tensor computations. We use one of the IO
examples automatically generated by our synthesis scheme,
but limit it to less than 100 elements as required by TF-Coder.

ChatGPT. ChatGPT [48] is large-scale language model
based on GPT 3.5. It has been used for a wide number of
tasks including code generation. We used version 3.5 in our
experiments. As its accuracy depends on the quality of its
prompts, we experimented with various formats and found
the following to be the most effective, followed by the origi-
nal source code:

"Translate the following C code to an expression in

the TACO tensor index notation. The expression must

be valid as input to the taco compiler. Return the

expression and only the expression, no explanations."

6.3 Setup
Benchmarks. To evaluate C2TACO, we designed two

different suites of tensor algebra benchmarks. The first con-
tains C programs generated by the TACO compiler a distinct
subset of those used to train the NMT model. The second
contains programs from existing software libraries. We refer
to these suites as artificial and real-world respectively.
The real-world benchmarks originate from different ap-

plications. We selected a subset of the programs used by
previous synthesis work [22]:
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Table 1. Synthesis coverage of different approaches on the artificial dataset.

Correct
TACO Program TF-Coder ChatGPT NMT ETS C2TACO

a(i) = b(i) + c(i) - d(i) ✓ ✗ ✗ ✓ ✓
a(i,j) = b(i,j) + c(i,j) ✓ ✓ ✓ ✓ ✓
a(i) = b(i) * c(i) ✓ ✗ ✓ ✓ ✓

a(i) = b(i) + c(i) + d(i) + e(i) ✓ ✗ ✗ ✗ ✓
a(i,j) = b(i,j) * c(j) ✗ ✗ ✓ ✓ ✓
a(i,j) = b(i,k) * c(k,j) ✗ ✓ ✓ ✓ ✓

a(i,j) = b(i) ✗ ✓ ✓ ✓ ✓
a(i,j) = b(i) * c(i,j) ✗ ✗ ✓ ✓ ✓
a(i,j) = b(i,j,k) * c(k) ✗ ✓ ✓ ✓ ✓

a(i,j) = b(i,k,l) * c(l,j) * d(k,j) ✗ ✓ ✗ ✗ ✓

• blas: baseline implementation of functions from the
BLAS [18] linear algebra library as synthesized by
Collie et al. [20].
• DSP: signal processing functions adapted from the TI
[2] library.
• makespeare: programs that manipulate arrays of in-
tegers. Originally from Rosin [54].
• mathfu: mathematical functions from the Mathfu [1]
library.
• simpl_array: problems performing different compu-
tation on arrays of integers. Originally from the work
by So and Oh [62].

In addition to those, we extracted benchmarks from other
suites that contain tensor manipulations:
• darknet: neural network operations from the Darknet
[53] deep learning framework.
• DSPStone and UTDSP: kernels targeting digital sig-
nal architectures from theDSPStone [72] andUTDSP[56]
suites.

We gathered 71 benchmarks in total, of which 10 are arti-
ficial and 61 come from real-world code.

Software. ETS and C2TACO are implemented in Python
version 3.8.10. The NMT Transformer model is implemented
using Fairseq [49] 0-12.2 with Google’s SentencePiece [40]
as the tokenizer. The analyses described on Section 5 are
implemented as plugins for the clang compiler version 14.0.0.
Operating system is Ubuntu 20.04.6 LTS.

Hardware. We evaluate on a multi-core CPU and GPU
platform. The targeted CPU is an 8-core Intel i5-1135G7 at
2.40GHz with 16 GB of RAM (LPDDR4) at 4267 MT/s. The
GPU is an NVidia GeForce GTX 1080 Ti using driver version
535.54.03 and CUDA runtime version 12.2.

Metrics. We evaluated the performance of each approach
by executing its generated code 10 times and recording the
median. In our experiments, we saw little execution time
variance. We measure speedup as the ratio of the running

time of lifted programs over the original version. Programs
are compiled with gcc -O3 version 9.4. We also recorded the
time to produce a lifted TACO program with a timeout of 90
minutes for all approaches in all the experiments conducted.

7 Evaluation
In this section, we evaluate against four criteria: coverage
(Section 7.1), error rate (Section 7.2), synthesis time (Sec-
tion 7.3), and speedup (Section 7.4).

7.1 Synthesis Coverage
Figure 5 shows the lifting coverage of each of the five schemes
described in section 6 across the two benchmark suites: arti-
ficial and real-world.

Benchmark Suite: Artificial. As described in section 6,
these are C kernels generated by the TACO compiler guar-
anteed to have an equivalent in the TACO language. The
coverage of each scheme is shown in Table 1 and Figure 5.

C2TACO is most effective, lifting all benchmarks correctly.
ETS lifts 8 out of 10. In two cases it could not find the correct
program in time as the space of possible grows too large.
C2TACO overcomes this by using the code analysis infor-
mation to focus the search on parts of the grammar where
the programs are most likely to be the solution. TF-Coder is
able to synthesize 4 out of 10 benchmarks but is unable to
match the coverage of the other synthesis approaches. Like
ETS scheme, it times out for the more complex programs.
NMT achieves higher accuracy, translating seven of the

benchmarks. The Transformermodel was trained using TACO-
generated kernels, which have a similar structure to the
synthetic programs. Unlike synthesis methods, it always pro-
duces a result even though it may be inaccurate and does
not timeout. In the three cases where NMT fails, it correctly
guesses the number of tensors but misorders them in the
resulting programs.
ChatGPT is able to correctly predict 5 of the 10 bench-

marks, hallucinating the remainder. In four cases it produces
syntactic invalid programs. The syntax errors include wrong
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Figure 5. Overall lifting coverage across benchmarks suites.

indices, multiple assignments, and duplication. In one case
a tensor was treated as having different orders in the same
program. In another, ChatGPT produces a program that is
syntactically valid but incorrectly refers to the same tensor
twice.

Benchmark Suite: Real-World. Real-world benchmarks
are more challenging as shown in Figure 5. Both ETS and
C2TACO are able to achieve high coverage of 85% and 95%
respectively. ETS times out on 5 out of 61 while the sole in-
stance of failure for C2TACO is the presence of program fea-
tures not contemplated in our implementation of the gram-
mar 4. TF-Coder manages to correctly synthesize 31% of the
benchmarks. Along with timeouts, TF-Coder also produces
programs that are semantically incorrect. We further discuss
these in Section 7.2.

Real-world programs impose a harder challenge to neural
machine translation due to the diversity of their implemen-
tation. While artificial programs have a syntactic structure
identical to TACO-generated C programs, real-world ones
are written in several different fashions, which makes it diffi-
cult for sequence-to-sequence methods to recognize patterns.
NMT performs particularly poorly compared to the artifi-
cial case, generating no correct programs. This reinforces
the view that it may be over-specific to a particular style of
programming due to its training sample. ChatGPT also has a
weak performance, only translating 20% of the benchmarks
correctly. As well as in the artificial case, both approaches
produce varied hallucinations as we detail below.

7.2 Error Analysis
We identify several different reasons for failure: a large
search space causing time out; syntactic and semantically
wrong solutions. Figure 6 depicts a summary.

ChatGPT TF-Coder NMT ETS C2TACO

20

40

60

Semantic Syntatic
Large Search Space Unsupported features

Fa
ilu

re
s

Figure 6. Distribution of failure causes for the different
approaches evaluated.

Large Search Space. Enumerative synthesis techniques
explore a large search space, which grows as program length
increases. This causes 60.42% of TF-Coder’s failures and all
failures for ETS. Neural translation approaches, ChatGPT
and NMT, always find a solution in time due as they trans-
late a program in a sequence-to-sequence fashion and do
not perform an extensive search. Although C2TACO is also
based on enumeration, it never times out as program analysis
restricts the search space sufficiently.
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Figure 7. Lifting time on real-world benchmarks. Y-axis is on logarithmic scale.

Syntactic. TF-Coder, ETS, and C2TACO always produce
programs that are syntactically correct. On the other hand,
neural approaches frequently generate incorrect translations
or hallucinations. In addition, 90% of the wrong translations
produced by ChatGPT are syntactically incorrect. These hal-
lucinations often include explanations of the ranges of index
variables and use braces instead of parenthesis, which is the
symbol used for indexation in the TACO tensor index no-
tation language. Example 1 shows a syntactic hallucination
produced by ChatGPT.

Example 1. When given as input a program that computes
a dot product of two arrays 𝑏 and 𝑐 , the expected solution
expressed in TACO is

𝑎 = 𝑏 (𝑖) ∗ 𝑐 (𝑖)
However, ChatGPT produced the string below which is not
a valid TACO program.

sum(𝑎[𝑖] ∗ 𝑏 [𝑖] for 𝑖 in 0..< 𝑛)

Although NMT is also neural-based it always produces
well-formed programs. The difference is that NMT is trained
on a domain-specific dataset containing only programs gen-
erated by the TACO compiler while ChatGPT is trained on
more diverse data.

Semantic. These are programs that are syntactically cor-
rect, but produce the wrong output when executed. Almost
40% of TF-Coder failures are programs that are semantically
wrong. TF-Coder relies on just one IO example and often fails
to generalize. The majority of false positives produced by TF-
Coder include manipulations on the shape of tensors, which
is not present in any of the original benchmarks. Semantic
hallucinations also correspond to 9.26% of the incorrect an-
swers produced by ChatGPT. Example 2 shows an example of
a hallucination produced by ChatGPT and Example 3 depicts
one generated by TF-Coder.

Example 2. For a program that performs general matrix
multiplication, the solution can be expressed in TACO as

𝐶 (𝑖, 𝑗) = 𝐴(𝑖, 𝑘) ∗ 𝐵(𝑘, 𝑗)

ChatGPT generates a program that includes an extra summa-
tion and reference to the resulting matrix on the right-hand
side. Although that is equivalent according to C semantics,
the same is not true in TACO.

𝐶 (𝑖, 𝑗) = 𝐶 (𝑖, 𝑗) + ALPHA ∗𝐴(𝑖, 𝑘) ∗ 𝐵(𝑘, 𝑗)

Example 3. Given a program that computes the product of
an array arr with a scalar value 𝑣 , the correct TACO imple-
mentation is:

arr (𝑖) = arr (𝑖) ∗ 𝑣 .

TF-Coder synthesizes a solution that, although syntacti-
cally valid in TensorFlow, adds 𝑎𝑟𝑟 to itself, which is not
semantically equivalent to the original program:

tf.add(arr, arr)

TACO-generated programs have a particular code struc-
ture that does not reflect real-world programming styles,
which is why NMT fails to generalize. Semantic hallucina-
tions are the cause of all of NMT’s failures.

7.3 Generation Time
Artificial. NMT is by far the fastest approach with a geo-

metric mean of 0.36 seconds. NMT is faster because it does
not involve an extensive search and it does not checkwhether
the program is correct using IO examples, which represents
the largest part of the synthesis time for the program syn-
thesis approaches. ChatGPT is also fast for the same reasons
and translated artificial benchmarks within 1.14 seconds on
average.
Despite performing a search, TF-Coder is fast, taking an

average of 1.18 seconds to find the solution. Nevertheless,
TF-Coder is only able to correctly lift 40% of the artificial
benchmarks (Section 7.1). ETS is the slowest method with
an average of 238 seconds to find the solution. In contrast,
C2TACO takes an average of 21 seconds. That result shows
the impacts of the program features obtained by syntactic
analyses in guiding the synthesizer to find the correct answer.
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Figure 8. Speedup obtained by the synthesized TACO programs on different hardware platforms. The baseline is the average
running time of the original implementations when compiled with gcc -O3.

Real-World. Figure 7 shows the synthesis times for each
of the five approaches across the real-world collection. Num-
bers are on a logarithmic scale. As expected both the neural
approaches NMT and ChatGPT are fast and stable across
all programs. NMT always returns a program in less than 1
second and ChatGPT takes a maximum of 4 seconds to find a
solution. However, as shown in Section 7.1, this speed comes
at the expense of frequently generating wrong code.
TF-Coder performs well on the simpler program. It syn-

thesized a solution even faster than neural approaches in 15
cases. Nevertheless, the generation time of TF-Coder rose
sharply as the programs became less trivial and it timed out
in 42 out of 61 instances. ETS is slower on average however
it only times out on 13% of the benchmarks. We observed
that ETS particularly struggles with instances of length N ≥
3 and programs involving multiple multidimensional tensors,
where the number of possible index expressions increases
exponentially for each tensor. C2TACO is considerably faster
with an average synthesis time of 5.6 seconds and a max-
imum of 7 minutes. The only cases where C2TACO was
slower than ETS involve very simple programs that only
perform initialization of arrays with a constant value. For
all the other programs C2TACO was able to find a solution
faster than ETS and it kept stable across the whole suite.

7.4 Performance of Lifted Code
The main reason we wish to lift code to TACO is to exploit its
portable performance. We generated C and CUDA versions
of the programs generated by C2TACO and measured their
performance on a multi-core CPU and GPU respectively.
Figure 8 shows the speedup across the benchmark suite
achieved running lifted programs. Baseline is the original
implementation compiled with gcc -O3. Only the real-world
benchmarks are considered as the artificial ones are directly
derived from the TACO compiler and the synthesized version
corresponds to the original.

Lifted programs are faster than their original counter-
parts in both devices. On a multi-core device, the bench-
marks are on average 1.79x faster when lifted to TACO. That
speedup varies over different benchmark sources. The high-
est speedup is 5.33x on DSPStone benchmarks and the lowest
is 1.21x for the darknet programs. The main reason for the
better performance is that the kernels generated by TACO
optimize array access by linearizing index expressions and
exploit the parallel nature of a multi-core CPU by inserting
OpenMP pragmas on loops.

Speedup is even higher on the GPU. The lowest value was
1.23x on the makespeare set. However, it is worth emphasiz-
ing that makespeare contains only 1 program. We noticed
high speedups on the digital signal processing benchmarks:
DSP, DSPStone, and UTDSP, on which lifted programs are
54.46x, 40.96x and 53.81x faster than the original version. The
highest value occurs on the BLAS benchmarks, which run
105.7x faster when lifted. The overall speedup achieved on
GPU was 24.11x. Similarly to the multi-core kernels, TACO-
generated CUDA kernels are designed to leverage high-level
parallelism on GPU accelerators and are optimized aiming
to divide the workload uniformly among threads.

Speedup by Program Complexity. We further evaluated
the impact of lifting on the performance of programs when
such programs become more complex. In our domain, we
consider programs more complex as they manipulate tensors
with higher orders. We define the concept of dominant order
as the highest order among the tensors in a program. For
example, the program shown in Figure 1, manipulates tensors
of 3 different orders: vectors (order 1), a matrix (order 2) and
a scalar variables (order 0). The dominant order for that
program is therefore 2.

Table 2 shows the overall speedup obtained on programs
with different dominant orders. We observed two categories
of dominant orders in the real-world benchmarks, 1 and 2.
Programs that handle two-dimensional tensors benefit more
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Table 2. Speedup obtained given different tensor dominant
orders. We consider the highest order among the tensors in
a program as dominant.

Dominant order Multi-core Speedup GPU Speedup
1 1.41 20.19
2 3.20 36.97

from being lifted than the ones operating on one-dimensional
ones. The speedup goes from 1.41x to 3.20x on the multi-
core and from 20.19x to 36.97x on the GPU. These results
show that the impact of lifting is even higher for programs
that are more complex in the sense that they manipulate
multi-dimensional tensors.

7.5 Summary
Overall C2TACO was the most effective method in our eval-
uation, lifting 95% with an average time of 21 seconds on the
artificial suite and 5.6 seconds on the real-world programs.
C2TACO was considerably faster than its ETS counterpart,
which illustrates that the program analysis used by C2TACO
to guide the search shown have a large impact on its genera-
tion time. We shown that we obtain performance gains by
lifting programs to TACO, achieving an average speedup of
1.79x on a multi-core platform and 24.1x on a GPU.

8 Related Work
In this section we discuss how our work relates to the area
of program synthesis and other techniques to automatically
construct code.

8.1 Program Synthesis
Program synthesis is a well-studied area where programs
are generated based on an external specification. It is the
form of specification and the methodology used to generate
programs that characterize the different approaches.

Logic. In Syntax-Guided Synthesis(SyGuS) [10] approaches,
the program specification is provided in the form of first-
order logic. This type of specification allows SMT solvers
such as Z3 [25] to be used in a CounterExample Guided
Inductive Synthesis(CEGIS) [63] loop to rapidly synthesize
candidate programs. Recent work allows extension beyond
first-order logic [51], but SyGuS is not well-suited to tensor
computations due to the complexity of checking the cor-
rectness of a tensor computation using an SMT solver. Due
to this limitation, our work uses a testing-based procedure
to validate candidates. Our synthesis approach is similar in
style to CEGIS(T) [3], in that we enumerate programs with
symbolic constants and tensors, and then find the bindings
for these constants as part of the correctness check.

IO Examples. IO-based synthesis is part of the program-
ming by example style of synthesis, in which input/output

examples are used as the specification. Early work looked at
generating Excel commands from a few examples [31]. The
same concept and has been used for other tasks [21, 73], in-
cluding generating PyTorch or TensorFlow code from tensor
inputs [46, 59]. TF-Coder [59] takes as input a single user-
provided example to generate equivalent TensorFlow code
using type constraints and bottom-up enumerative synthe-
sis. Alternative schemes [16, 46] use deep learning models
trained on IO samples to guide the generation of code.

Verified Lifting. Using program synthesis to generate
programs from a specification is a long-studied area [28, 61].
Using a low-level program as the specification and a high
level-one as the target was tacked by Kamil et al. [34]. Here
appropriate stencil-like loops in FORTRAN are lifted to their
equivalent in Halide [52]. This has been extended to a more
generic LLVM framework [4] based on a common IR. While
this has the potential to allow lifting to multiple targets [5–
7], it requires the compiler writer to provide a compiler and
decompiler from each potential source and target into the IR
which is not scalable. Their technique also relies on being
able to formally verify the equivalence of the target and
source programs in order to give counterexamples to the
synthesis algorithm, which we have found is not possible
for programs in our benchmark suite. In contrast, whilst it
gives weaker guarantees of correctness, our approach is able
to synthesize programs based on observational equivalence,
and the scalability of our approach is not dependent on the
tractability of the equivalence checking problem.

8.2 Other Approaches
Neural Machine Translation. Since the advent of se-

quence to sequence models [64], neural machine transla-
tion has been applied to programming language translation
tasks [11, 12, 26], including unsupervised settings [13, 55, 65].
Training data is often extracted from coding websites [42].

Other tasks range from code style detection [50], generat-
ing accurate variable names [41], correcting syntax errors
and bugs [32, 57] code completion [36] and program syn-
thesis [14] to API recommendation [35], and specification
synthesis [43]. While powerful, such approaches are inaccu-
rate and are not mature enough for precise lifting.

API Migration/Matching. Replacing matched code/IR
to a fixed API call is a limited form of raising. KernelFaRer
[24] works at the program level and restricts its attention
to just GEMM API targets, but is more robust than IDL [30]
matching significantly more user code. This robustness is
extended further by Martínez et al. [44] which uses behav-
ioral equivalence to match code. Such approaches, however,
are intrinsically limited as they focus on fixed APIs rather
than the open-ended nature of DSLs and their IRs.
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Compiling TACO. TACO [37] is a popular DSL for ex-
pressing tensor computations. In addition to generating high-
performance CPU code [38], it has been extended to compile
to GPUs [58], CGRAs [33], high-performance libraries [15]
and distributed systems [70]. In addition to these target-
specific optimizations, work has been done for sparse ten-
sors [8, 71].

9 Conclusion
This paper presents C2TACO, a synthesis tool for lifting C
tensor code to TACO. C2TACO uses equivalence behavior
and program analysis to generate code and it is shown to
lift more programs in a shorter time with greater accuracy
when compared to an alternative NMT and simpler synthesis
approaches. C2TACO also outperforms existing techniques,
lifting 95% of the benchmarks, against 32% for TF-Coder
and 24% for ChatGPT. We demonstrate that the synthesis of
equivalent TACO programs is feasible for a range of C pro-
grams taken from software libraries and benchmark suites.
We also show that we can obtain significant performance
improvement over the original source. Using C2TACO we
are able to synthesize TACO programs that are 1.79x faster
when evaluated on a multi-core CPU and 24.1x when ported
to a GPU platform. Future work will explore methods to
further improve lifting applicability, by handling sparse ten-
sor algebra, and efficiency using neural-guided synthesis to
perform search.
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