
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Automatic Inspection of Program State in an Uncooperative
Environment

José Wesley de Souza Magalhães1 | Chunhua Liao2 | Fernando Magno Quintão Pereira1

1Computer Science Department, UFMG,
Belo Horizonte, Brazil

2Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory,
California, United State of America
Correspondence
Antonio Carlos Avenue, 6627. Belo
Horizonte, MG/Brazil. Email:
fernando@dcc.ufmg.br

Summary

The program state is formed by the values that the program manipulates. These val-
ues are stored in the stack, in the heap, or in static memory. The ability to inspect the
program state is useful as a debugging or as a verification aid. Yet, there exists no
general technique to insert inspection points in type-unsafe languages such as C or
C++. The difficulty comes from the need to traverse the memory graph in a so-called
uncooperative environment. In this paper, we propose an automatic technique to deal
with this problem. We introduce a static code transformation approach that inserts
in a program the instrumentation necessary to report its internal state. Our technique
has been implemented in LLVM. It is possible to adjust the granularity of inspec-
tion points trading precision for performance. In this paper, we demonstrate how to
use inspection points to debug compiler optimizations; to augment benchmarks with
verification code; and to visualize data structures.
KEYWORDS:
Inspection point, debugging, program state

1 INTRODUCTION

The state of a program is the ensemble of values that the program manipulates. Said values are stored in memory regions that
can be reached through program structures like pointers or activation records. The ability to inspect this state is useful for rea-
sons including debugging, verification and visualization1. The identification of the memory regions that constitute the program
state is a solved problem for type-safe languages that distinguish pointers from other types. As testimony to this fact, the iden-
tification of program state is the basis of mark and sweep garbage collectors2,3. However, identifying program state is difficult
in type-unsafe languages. These languages include not only C, C++ and mainstream assemblies, but also the unsafe parts of
otherwise type-safe languages such as Java, C# and Racket4. C and C++ are commonly known in the garbage collection com-
munity as uncooperative5. They own this qualifier to a weak type system, that neither associates size information with memory
regions, nor distinguish pointers from scalars. Although there exist garbage collectors for languages like C or C++6,7,8,9,10, such
implementations are not mainstream. The more reliable these garbage collectors are, the heavier their overhead.
Contributions
We demonstrate that ideas previously used in the implementation of garbage collectors for type-unsafe languages can be used
to inspect program state in these languages. With this goal in mind, we bring, from the systems community into the software
engineering community techniques to create Program Inspection Points, a notion that we define in Section 2. Like in classic
garbage collectors for C/C++6,7,8,9,10, inspection points impose no overhead on programs unless they need to be inspected;
Moreover, like in that line of work, we are willing to accept some imprecision: the inability to distinguish pointers from integers,

2 Magalhaes ET AL

for instance, might prevent the inspection of some parts of the heap. Yet, in contrast to garbage collectors, we provide the
program with the means to associate low-level data—heap and stack allocated memory, for instance—with high-level source-
code information: user-defined names and line locations.
Customization
The goal of this paper is to show how to inspect the internal state of programs in settings that lack runtime type information. To
harmonize precision and performance, we adopt customization: the ideas to be discussed in this paper can be adopted at different
levels of granularity. These levels of granularity determine which forms of memory allocation can be tracked: static, stack or
heap, and how deeply the graph formed by the points-to relations can be traversed. This paper shows how this customization is
achievable within a unified framework, which we call WHIRO. WHIRO has been implemented on top of the LLVM compiler11.
It relies on the compiler only—it does not depend on the operating system or the architecture. Thus, WHIRO can be used even
in embedded devices that lack support of inspection tools like Valgrind12, which is architecture-dependent, or GDB13, which is
operating system-dependent, or the OpenSmalltalk debugger14, which relies on a virtual machine simulator.
As we explain in Section 3, WHIRO moves to compilation time as much computation as possible to preserve the performance

of inspected programs. To resist the effects of compiler optimizations, WHIRO is implemented at the level of the compiler’s
intermediate representation—it requires no interventions on the source code of programs. Section 3.3 explains howWHIRO uses
high-level debugging information to provide users with meaningful reports about the program’s internal state. At its maximum
granularity, WHIRO can inspect every block of memory allocated on the heap, without interfering with the original semantics
of the instrumented program, as Section 3.4 explains.
Design Decisions
During the design ofWHIRO, we were faced with several questions whose answers were not immediately evident to us. Section 4
discusses some of these challenges, explaining the design decisions taken throughout the implementation of WHIRO. In partic-
ular, we discuss howWHIRO deals with aspects of the C and C++ programming languages that make them uncooperative, such
as pointer arithmetics, lack of size information associated with arrays and the weak type system, which does not tag values with
type information. Some of our solutions to deal with these characteristics of C and C++ were motivated by pragmatism. For
instance, WHIRO can traverse the graph formed by points-to relations, as long as pointers are declared as such. If scalar types
are casted into pointers, then WHIRO is still able to inspect the contents of memory; however, inspection assumes that these
pointers dereference a single cell, even when they refer to an array of multiple cells. Another difficulty that emerged during the
project of WHIRO was related to compiler optimizations: in general, LLVM’s debugging information is enough to ensure that
the program state of optimized programs can be inspected; however, transformations such as array scalarization removes this
information. Thus, WHIRO’s implementation had to identify and repair the missing data in this case.
Applications
Section 5 shows several applications that can be built on top of WHIRO, including debuggers, benchmark synthesizers and
program visualizers. These applications use different customizations of WHIRO, which are listed in Section 5.1. The possibility
to customize the amount of program state that WHIRO tracks is key to producing practical applications. For instance, to debug
compiler transformations (Sec. 5.2), we need to inspect every memory location affected by the program, regardless of its usage
e.g., as a pointer or as a scalar, or its location e.g., static memory, stack or heap. To synthesize verification code for benchmarks
(Sec. 5.3), we need to preserve their performance; for instance, printing only the state of local variables at the end of program
execution. However, in scenarios where maintaining the performance of the original program is not essential, WHIRO can use
much more precise memory-tracking techniques. As an example, to visualize data structures (Sec. 5.4), WHIRO can traverse the
entire graph formed by pointers to locations in the heap.
Summary of Results
Section 6 evaluates the precision and the overhead of WHIRO. At its maximum precision, our implementation keeps track of
every memory address that has a corresponding allocation point in the program’s source code: static, local and heap allocated
variables, including aggregates such as arrays and structs. At this level, we observe an average slowdown of 1.34x on MIBENCH
programs15, an increase of memory usage of 1.63x, and an increase of static executable size of 1.48x. However, precision is
customizable. For instance, when used to synthesize verification code for benchmarks, we observe no performance regression,
an increase of memory usage of 1.07x, and an increase in code size of 1.06x. WHIRO is open software, distributed under the
GPL 3.0 License, and can be retrieved at https://github.com/JWesleySM/Whiro.

https://github.com/JWesleySM/Whiro

Magalhaes ET AL 3

2 CORE DEFINITIONS

The goal of this paper is to let users observe the state of the memory manipulated by a program at different points of its execution.
A summary of our modus operandi follows. First, users select static inspection points in the source code of a program, like A-D
in Figure 1. Second, WHIRO observes the variables at the different calling contexts (dynamic inspection points) that might exist
at those locations. Figure 2 shows these dynamic contexts. At each one of these points,WHIRO produces an image of the program
state, relating the contents of memory locations with the names of variables in the source code of the program. Figure 3 shows
snapshots produced for two inspection points at different calling contexts. In the rest of this section, we define the concepts just
mentioned, starting with the notion of a Static Inspection Point.
Definition 1 (Static Inspection Point – SIP). Given a program P written as a sequence of statements, a static inspection point
is a point following a statement of P .

int numNodes = 0;

struct Node {
 int data;
 struct Node* next;
};

struct Node* create(const int data, struct Node* next) {
 struct Node* p = (struct Node*)malloc(sizeof(struct Node));
 p->data = data;
 p->next = next;
 numNodes++;
 return p;
}

struct Node* incAll(struct Node *head) {
 if (head) {
 return create(head->data + 1, incAll(head->next));
 } else {
 return NULL;
 }
}

int main(int argc, char** argv) {
 struct Node *n = NULL;
 struct Node *m = NULL;
 if(argc > 1){
 for (int i = 0; i < argc; i++) {
 n = create(i, n);
 }
 }
 if(n){
 m = incAll(n);
 }
 return 0;
}

A

B

C

D

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

FIGURE 1 A program with four static inspection points marked with letters A-D.

Example 1. The program in Figure 1 implements a function that recursively traverses a list duplicating its nodes while
incrementing the values in said nodes. We have marked four inspection points in this program, labeled as A, B, C and D.

4 Magalhaes ET AL

main
L29

create
L12

main
L33

incAll
L18

A

main
L29

create
L12 A

incAll
L18

incAll
L19 C

main
L33

incAll
L18

incAll
L18 Acreate

L13

main
L33

incAll
L18 Acreate

L13

main
L33

incAll
L18 B

main
L34 D

main
L33

incAll
L18 BincAll

L18

1:

2:

3:

4:

5:

6:

7:

8:

FIGURE 2 Dynamic contexts produced by the program in Figure 1, with the input “main a”.

Definition 2 (Dynamic Inspection Point – DIP). A dynamic inspection point is a static inspection point, plus a calling context
when that point executes. The calling context of an invocation of a function f is determined by the list of functions active when
f was invoked.
Example 2. Figure 1 shows four static inspection points. If we execute that program with the command line “main a”, then
we shall observe the eight dynamic inspection points seen in Figure 2. We have one dynamic inspection point for each time that
a static inspection point is traversed during the execution of the program. Thus, the same static inspection point might yield a
large number of different dynamic inspection points.

2.1 Program States
We define as state the set of values of local, static and heap-allocated variables of a program at a given dynamic inspection
point. The Visible Program State is the subset of the program state that is reachable from variables visible at the scope of that
dynamic inspection point:
Definition 3 (Visible Program State). The visible state of a program at a dynamic inspection point p is a map from the program
symbols visible at the scope of p to values. Program Symbols are the names of program variables.
The notion of visible state differs from the notion of Reachable State commonly adopted in the description of trace-based

garbage collectors. The reachable state of a program (see, for instance, Aho et al.16 Sec.4.6.6) is formed by memory allocated
statically or on the stack, plus the memory in the heap referenced by any value in the reachable state (including the heap itself).
The visible state differs with regards to stack allocated variables. Only variables in the scope of the active function (the function
on the top of the call stack) are considered visible.
Example 3. Figure 3 shows the visible program state at two dynamic inspection points during the execution of the “main”
function from Figure 1, with string “a” as input. The visible program state is represented as a graph, in which nodes are memory
locations, and edges denote points-to relations. The two graphs in Figure 3 correspond to the fourth and seventh dynamic
inspection points seen in Figure 2. Concerning the latter, for instance, we have a variable that is statically allocated (numNodes);
two variables that are allocated on the stack (head and retn); and a number of memory blocks allocated on the heap. These
heap-allocated blocks form the two linked lists that exist once the function incAll returns, in Line 18 of Figure 1. The stack-
allocated variable retn is not a visible program symbol, i.e., it is not a user-defined name in Figure 1. It represents the local
variable that points to the value returned by incAll. Notice that the seventh dynamic inspection point also includes the activation

Magalhaes ET AL 5

p: •

data: 1

next: •

main
L33

incAll
L18 B7:

main
L33

incAll
L18

incAll
L18 Acreate

L134:

data: 1

next: •

numNodes: 3

NULL

head: •

retn: • data: 2

next: •

data: 1

next: •

NULL

data: 1

next: •

data: 0

next: •

Static allocation Stack allocation

Inspection trace:

Visible program state:

Inspection trace:

Visible program state:

Types of locations: heap allocation

numNodes: 4

FIGURE 3 Visible program states at two different dynamic inspection points from Figure 2. Symbol “retn” is the auxiliary
variable that holds the return value of function incAll at Line 18 of Figure 2.

of function main; however, the local variables of main are not part of the visible state in the static inspection point B (Line 18
of Figure 1). Therefore, variables like m and n (declared within main) are not depicted in the graphs that Figure 3 shows. Even
though they are on the stack when incAll is active, they are not visible in the scope of that function. Had we shown the visible
state at inspection point D (which is within function main), for instance, then these variables would be present.
The reason to distinguish visible from reachable state is pragmatic. The difference between visible and reachable states does

not compromise WHIRO’s ability to inspect values created by recursive functions. Variables that are not in scope cannot be
modified (within the defined semantics of C, for instance17). Once these invisible variables become active, e.g., when their
activation record reaches the top of the calling stack, they can be inspected. Nevertheless, the static memory and the entire heap
(including parts reachable only via invisible variables) are still tracked.

3 TRACKING STATE

To track the visible program state, we use a data structure henceforth calledmemory monitor. Definition 4 introduces the several
parts that constitute amemorymonitor. Before discussing each one of these parts, one explanation is in order.WHIRO instruments
programs in the Static Single Assignment (SSA) format18. SSA is an intermediate representation adopted in many different
compilers, including LLVM, the underlying infrastructure on top of which WHIRO is built. The core characteristic of SSA-form
programs is the fact that each variable name has only one definition site. In other words, each one of the multiple definition
sites that a variable might have in the source code gives origin to a new variable name in LLVM’s intermediate representation.
Therefore, for each source variable v there might exist several SSA definitions, which are henceforth called def (v).
Definition 4 (Memory Monitor). The memory monitor is a data structure given by a tuple (G,S,H, T), such that:
G,S: Maps of global or stack Symbols to (MetaVar, Trace)
H: Set of Heap Addresses
T : Set of Type Descriptors

6 Magalhaes ET AL

Where:
MetaVar consists of name and type of a variable;
Trace is List of (ProgramLoC, SSADef);
SSADef is the definition point of some expression in an SSA-form program;
ProgramLoC is a program point, i.e., a program instruction or declaration in the LLVM intermediate representation.
Type Descriptor is a metadata that specifies the name and the format specifier of a type in the source code.
InDefinition 4,Gmaps global variables to debugging information.S is analogous, except that it maps stack-allocated variables

to debugging information. There exists one table S per program function—each table stores information related to variables in
the scope of a function. Thus, we represent each table S as Sf , where f is the name of the function that the table represents.H
is the set of addresses of memory blocks allocated in the heap. T holds metadata describing every type in the target program.

3.1 Static Components of the Memory Monitor
The G (global) and S (stack) components of the memory monitor exist only at compilation time. They do not exist when the
target program executes. Their goal is to guide the insertion of instrumentation code in the program. Said code serves two
purposes: (i) report program data to the user; and (ii) update the heap map H . The following parsing events cause updates of
these structures (at instrumentation time):

1. Declaration of global variable v with type t: an entry (def (v), t) is created in G. The term def (v) is the SSA-form name
of the variable v. It distinguishes this definition of v from other uses of the same name to declare different variables,
e.g., local variables also called v. Since global variables have their address determined at compilation time, def (v) for a
global variable v represents its address. Such addresses are visible in every program point, thus the assignments to global
variables in the program are not tracked. To inspect a variable statically allocated, the Memory Monitor always uses the
address definition.

2. Declaration of a local variable v with type t within function f : an entry (def (v), t) is created in Sf , where Sf is the table
of stack symbols associated with function f . The term def (v) is the SSA-form name of variable v. Notice that the same
variable name can be redefined multiple times within the same function; however, each redefinition will have a different
SSA-form name.

3. Assignment v = u at line l of function f : the pair (l, def (u)) is appended to (def (v), t). The label l is the line, in source
code, where variable v is defined, and the term def (u) is the SSA-form name of the variable that appears on the right side
of the assignment. If u is a constant, then its SSA-form name is the constant itself; otherwise, it is a unique representation
of the program location where u is defined.

Example 4. Figure 4 shows S and G for the program in Figure 1. G contains data for global variable numNodes. Table Smain

refers to function main. We omit the other two stack tables, e.g., Screate and SincAll, to save space. Notice that what we call
an SSA definition, once mapped back into the source code, might not correspond to a variable name. For instance, the SSA
definition associated with the global variable numNodes is the constant zero, and the SSA definition associated with the local
variable n is the expression create(i, n). This expression, in the low-level LLVM representation, will have a name, which
is the name of the auxiliary variable used to store its result. Thus, the SSA definition associated with create(i, n) is the
SSA name of that auxiliary variable. WHIRO uses debugging information to map this SSA definition back to the expression
create(i, n), which is present in the source code of the program.

3.2 Dynamic Components of the Memory Monitor
The heap table H and the type table T exist during program execution. We call these two tables the Auxiliary Program State.
Table T is constructed statically and is immutable. It contains type descriptors. Descriptors are flyweights, meaning that there

Magalhaes ET AL 7

numNodes numNodes, int

Global Table G:

Stack Table Smain:

m

n

argv

argc
argc, int

argv, char**

n, struct Node*

m, struct Node*

(1, 0)

(25, NULL)

(26, NULL)

(29, create(i, n))

(33, incAll(n))

Symbol MetaVar Trace

FIGURE 4 Global and stack tables for the program in Fig. 1. We show only the stack table for main.

exists one per type in the program’s source code. T lets WHIRO print non-scalar variables, for it associates every type with an
output format. It also allowsWHIRO to navigate the program’s visible state, indicating fields of aggregate types that are pointers.
For product types (e.g., C-like structs) the descriptor consists of the name, format, and the offset of each field. For pointers
and qualified types (const, volatile, etc), the descriptor also contains an index to access the descriptor of the base type. This
recursive nature can represent any composite type.
Example 5. Figure 5 shows the type table for the program earlier seen in Figure 1. The table contains seven entries, one for
each type used in Figure 1, namely: int, struct Node*, struct Node, const int, char**, char* and char. Each entry is
associated with a type descriptor. Type descriptors for product types, e.g., struct, contain multiple blocks, one per field in the
product. Blocks contain four attributes: N, F, O and B. The first attribute, N, is the name of the field within a product type. For
non-product types, N is the empty string. The second attribute, F, is the format used to print information associated with variables
of that type. We adopt the nomenclature used in the C programming language. For instance, integer variables are printed using
the %d format, and pointers use the %p format. The third attribute, O, is the offset of a field within a product type. O is non-zero
only for struct fields other than the first field. Finally, the last attribute, B, is the base type of a qualified type. For instance,
the third entry in Table T in Figure 5 refers to const int; thus, its base type is int. This base type is associated with the first
entry of T (B = 0).

0 1 2 3 4 5 6
int pointer Node const pointer pointer char
N: "" N: "" N: "data" N: "" N: "" N: "" N: ""
F: %d F: %p F: %d F: %d F: %p F: %p F: %c
O: 0 O: 0 O: 0 O: 0 O: 0 O: 0 O: 0
B: 0 B: 2 B: 0 B: 0 B: 5 B: 6 B: 6

N: "next"
F: %p
O: 8
B: 2

FIGURE 5 Type Table T created—at compilation time—for the program in Figure 1. The keys in the type table areN = name;
F = format; O = offset and B = base type.

The Heap TableH , in contrast to the type table, changes during the execution of the program. Instrumentation inserted in the
target program updatesH . Each entry in the heap table contains an index to a descriptor in the type table.H also keeps track of

8 Magalhaes ET AL

freed heap addresses, which are considered unreachable data. If a freed address is re-allocated by the memory manager, WHIRO
sets the corresponding entry inH as reachable again, and updates the reference to T according to the type being allocated. The
following events cause the heap table to be updated (at running time):

1. Memory is allocated, e.g., v = malloc(Tp)1: the monitor creates an entryH[v] (if one does not exist), sets it as reachable
and associates this descriptor with T (Tp). Notice that v contains a memory address—in this case the address returned by
malloc. Hence, the Heap Table is indexed by addresses.

2. Memory is freed via free(v). WHIRO setsH[v] as unreachable. Again, notice that the contents of v—amemory address—
is used to index H . Thus, a sequence like v = malloc(Tp); u = v; free(u) will have the same effect upon H as v =
malloc(Tp); free(v).

Example 6. Figure 6 shows the auxiliary state after the program in Figure 1 executes the inspection pointB for the second time.
H contains four heap-allocated blocks corresponding to the nodes of two linked lists. Each block contains an index to access
the type table; hence, WHIRO is able to find the type of memory chunks. The “Vis” attribute indicates whether that block was
visited when traversing the heap graph, as section 3.3 shall explain.

0x1216066c0 0x1216066d0 0x1216066e0 0x1216066f0
Type: 2 Type: 2 Type: 2 Type: 2
Size: 1 Size: 1 Size: 1 Size: 1
Free: 0 Free: 0 Free: 0 Free: 0

Visited: 0 Visited: 0 Visited: 0 Visited: 0

head: •

retn: • data: 2

next: •

data: 1

next: •

NULL

data: 1

next: •

data: 0

next: •

Keys

Va
lu
es

FIGURE 6 Heap TableH that exists at the seventh dynamic inspection point in Figure 3. The field “Visited” in the heap table
is used only during information retrieval. It indicates if a node has been traversed when reporting the internal state of a program.
This precaution ensures that the contents of blocks pointed to by multiple variables are only reported once.

3.3 Information Retrieval
WHIRO inserts code at inspection points to retrieve the visible program state. Data is printed as either a textual log, or as a DOT
graph (see Section 5.4). The rest of this section explains how WHIRO retrieves this information.
Inspection Traces. When the inspection point is logged, only one SSA definition def (v) is valid for a given variable name v.
However, the global map G or the stack table Sf associated with a function f can contain multiple definition sites for the same
variable. Given a variable v, let Trace(v) be the set of SSA definitions bound to v, either on the global table or on the stack table
(see Definition 4).When reporting the state of v at a static inspection point p, WHIRO finds the definition (l, def (v)) ∈ Trace(v)
using dominance. Given two program points q and p within the same function f , we say that q dominates p if every path from
the entry point of f to p goes across q. In a well-formed SSA-form program, the definition point of a variable dominates all the
sites where the variable is used; and every use of a variable is reached by a single definition site. Therefore, the definition site
that corresponds to a use of a variable at a given program point is unique, and can be statically determined.

1We use the same assumption as Banerjee et al. 10: heap-allocated addresses only come out as the return value of particular functions like malloc, calloc, etc.
Section 4 provides the complete list.

Magalhaes ET AL 9

Extending Live Ranges. An inspection point reports the state of all the automatic variables declared in the function where the
SIP (Def. 1) exists. A problem ensues if a variable v is not alive at the SIP, and the SIP can be reached through multiple SSA
definitions of v. In this case, WHIRO would not know which def (v) to use. To deal with this issue, WHIRO inserts, at the SIP, a
�-function joining all the definitions of v that reach that program point. This special notation, a �-function, is part of the SSA
format18. It joins the live ranges of different names in the low-level code that correspond to the same name in the high-level
program. Example 7 shows how �-functions let us extend the live ranges of variables.
Example 7. In Figure 1, n and m are promoted from the stack to virtual registers. Two definitions of n can reach point D, coming
from lines 25 and 29. WHIRO shall create a �-function right after the conditional test, to join the different definitions of n. This
�-function will define a new name for variable n. This new name will be inspected at the inspection point D. Figure 7 shows
this new definition of n. Similarly, definitions of m can reach D coming from lines 26 and 33; however, for simplicity, Figure 7
omits the new definitions of this variable.

int main(int argc, char** argv) {
 struct Node *n0 = NULL;
 struct Node *m = NULL;
 if(argc > 1){
 for (int i = 0; i < argc; i++) {
 n1 = create(i, n);
 }
 }
 if(n){
 m = incAll(n);
 }

 return 0;
}

n2 = phi(n0, n1) Dinspect n2

24
250
26
27
28
290
30
31
32
33
34

35
36

FIGURE 7 The SSA definitions of variable n. The instruction n2 = phi(n0, n1) copies n1 into n2 if the definition of n1 at
Line 29 reaches the inspection point. Otherwise, it copies n0 into n1. In the actual instrumentation, new definitions would be
created also for variable m; however, we omit them to keep the figure simple.

Function Counters and Calling Context. The names reported in an inspection point are defined statically. Nevertheless, DIPs
(Def 2) run in different calling contexts. Hence, the same name may be associated with different values at running time. WHIRO
distinguishes data at DIPs by the calling context. A static counter is associated with every instrumented function. The counter
is incremented each time the function is called. To report the program state, the current value of the function counter is also
informed.
Dealing with Multi-Dimensional Arrays. WHIRO can print the contents of arrays of primitive types; however, in its default
mode, WHIRO produces a hashcode that summarizes that data. For arrays of aggregate types, WHIRO inspects each cell individ-
ually. To find the hash of an array v of primitive types, WHIRO still traverses v entirely, even if the array is multidimensional.
It is to note that a change in any array position yields a different hashcode; hence, hashing does not harm the use of WHIRO
as a debugging tool. If the dimensions of the array are determined by constants known at compilation time, then no additional
instrumentation is inserted in the program to permit this traversal: the necessary loop is hardcoded at compilation time. Other-
wise, WHIRO inserts instructions to compute those values at runtime. These values are kept in the S table. For arrays of pointers,
WHIRO treats each contiguous block of memory independently.
Traversing the Heap Graph. The blocks allocated in the heap form a graph. Edges exist whenever a block contains a pointer
to another heap address. One of the inspection modes of WHIRO traverses this graph (see Section 5.1) in depth-first fashion.
To avoid cycles, WHIRO adds a bit to every node in the Heap Table H , indicating if that node has been visited. Tracing-based
garbage collectors implement a similar approach3,2.
The keys in the Heap Table are memory addresses. Memory allocation or deallocation changeH , as explained in Example 6,

because these actions create or remove valid addresses that can be dereferenced. However, aliasing among variables of pointer

10 Magalhaes ET AL

type bears no influence onH . In other words, if v is a pointer, whose address is stored inH , an assignment such as u = v does
not change it. After the assignment, both u and v will dereference an address that is logged inH . Information retrieval will visit
the block dereferenced by one of these variables once. To prevent multiple visits, we set every node as unvisited right after the
traversal ends, through the “Visited” field in Figure 6.
Notice that WHIRO does not add meta information per variable in the target program. This lack of runtime information forces

WHIRO to inspect pointers assuming the type used to declare those pointers—information readily available in the Type Table T .
Therefore, WHIRO cannot recover the original type of a variable after a cast, for instance. Example 8 illustrates this limitation
of WHIRO.
Example 8. Figure 8 shows a program that performs casts between a struct and an array of characters. In this example, if WHIRO
inspects the contents of pointers n0 or c0, then these pointers are treated as references to struct Node. However, if pointers
c1 or n1 are inspected, then these pointers are treated as references to arrays of 16 characters.

struct Node {
 int data;
 struct Node* next;
};

struct Node* create(int data, struct Node* next);

int main() {
 struct Node* n0 = create(0, NULL);
 char* c0 = (char*)n0;
 char* c1 = malloc(sizeof(struct Node));
 struct Node* n1 = (struct Node*)c1;
}

2
Node

“next”
%p
8
2

N:
F:
O:
B:

“data”
%d
0
0

N:
F:
O:
B:

5
pointer

“”
%p
0
6

N:
F:
O:
B:

6
char

“”
%c
0
6

N:
F:
O:
B:

0x1246066c0

2
1
0
0

Type:
Size:
Free:

Visited:

0x1246066d0

5
16
0
0

Type:
Size:
Free:

Visited:

Inspection of pointers c0 and n0 will lead to key 0x1246066c0.
This block can be traversed in WHIRO's PRECISE mode.

Inspection of pointers c1 and n1 will lead to key 0x1246066d0.
This block cannot be traversed in WHIRO's PRECISE mode.

Type Table T

Heap Table H

… … …01
02
03
04
05
06
07
08
09
10
11
12
13

FIGURE 8 How WHIRO represents pointers and casts between pointers. See Figure 5 for the entire Type Table T .

As a consequence of not associating runtime information with references, WHIRO is not able to traverse the graph formed
by objects allocated into a slab, for instance. A slab is an array where objects are stored in serialized format. This approach is
typical in Bonwick’s Slab Allocators19. References to objects stored in a slab would be treated like pointer n1 in Example 8—as
a sequence of bytes, and not as a structured value. A sound solution to this shortcoming would force WHIRO to track types per
reference (or to track all the references to an allocation). Any of these approaches would incur additional overhead of monitoring
pointer operations including assignments and arithmetic: a path that we opted not to follow.

3.4 Properties of the Memory Monitor
A number of properties ensue from our implementation. We provide sketches of proofs of each property. All these properties
have been verified experimentally, as we explain in Section 6.
Property 1 (Non-interference). The memory monitor does not alter any value originally computed by the program.

Proof (Sketch): WHIRO does not update memory originally allocated by the program. Notice that WHIRO is
not free of side-effects: if users inspect a program point, data shall be output from the program.

Magalhaes ET AL 11

The Non-Interference Property regards exclusively the values of variables manipulated by the program. Thus, a correct con-
struction of WHIRO does not modify neither the program’s runtime values, nor its memory allocation behavior, e.g., the order
in which the different calls to malloc or calloc happen. The relative position of the fields within a C-like struct is also
preserved. However, WHIRO’s static instrumentation modifies the original memory layout of the target program by introducing
stack-local and heap-allocated monitor data-structures. These interventions caused by WHIRO can modify the security proper-
ties of a program; for instance, with regards to exploits that leverage static knowledge of the memory layout. As a consequence,
code modifications that rely on relative positions within, for instance, a function’s activation record, must run after WHIRO. An
example of such modification would be the canaries used to prevent buffer overrun attacks20.
Property 2 (Time Complexity). When retrieving or updating information, stack and global variables are located in O(1); heap-
allocated blocks are retrieved in O(logn), where n is the number of blocks currently allocated in the heap.

Proof (Sketch): Stack and global variables are accessed via their addresses. WHIRO uses a hash table to record
heap blocks. Collisions are handled via a balanced binary tree.

Property 3 (Space Complexity). The sizes of the components G, S and T of the memory monitor are determined statically.
G and S exists only at compilation time; T exists at compilation time and also at running time. The size of G is proportional
to the number of global variables in the program; the size of S is proportional to the number of local variables declared in the
program; the size of T is proportional to the number of types declared in the program.

Proof (Sketch): These facts are consequence of WHIRO’s implementation: the sizes of G, S and T are deter-
mined statically, based on the number of global and automatic (i.e., stack-allocated) variables, and on the number
of types declared in the program.

Property 4 (Ordering). When inspecting visible state, first stack-allocated names and heap-blocks are read, then global names.
Global and stack data are reported in lexicographical order on the names of variables in source code. Heap blocks in the root of
the reachable graph are reported in the order of updates. Within a connected component, the heap graph is reported in the order
of updates.

Proof (Sketch): Global and stack variables are kept in G and S maps respectively. The contents of such maps
are sorted by the key values, which in this case are the program symbols. Newly allocated heap blocks are pushed
to the end ofH , which means that it can be traversed as a list

Notice that Property 4 is valid only for sequential programs. WHIRO, like most on-the-fly garbage collectors21, does not
synchronize access to the heap tableH by default. Thus, it cannot guarantee Property 4 for multi-threaded programs. As many
of our decisions, this one is also pragmatic: between performance and ordering, we opted for the former. Reversing this decision
is a small change in the framework’s implementation.
Property 5. (Coverage) At maximum precision, every block that has been allocated in the heap and has not been freed is
traversed at least once if this memory is reachable.

Proof (Sketch): Every allocated block is kept in the Heap Table. When inspecting a variable that points to heap-
allocated data, WHIRO checks if such data points to another valid memory location. In the positive case, WHIRO
will also report the data in said location and perform the reachability checking again. By doing that, WHIRO is able
to traverse the entire valid heap. By keeping the Free flag in the entries of H , we are able do distinguish which
addresses are valid in the program. Notice that this property assumes that the functions that allocate blocks in the
heap are known, for the invocation sites of these routines need to be instrumented.

4 IMPLEMENTATION DECISIONS

While developingWHIRO, we took a series of engineering decisions (also known as “hacks”) to ensure that the framework could
handle general C/C++ programs. These decisions, in our opinion, are not necessarily of scientific interest: they are motivated
by us choosing LLVM as the underlying development ecosystem. Nevertheless, from a coding standpoint, they might hold some
consequence. In this section, we go over some of these decisions.

12 Magalhaes ET AL

4.1 Dealing with pointer arithmetics
Languages like C, C++ and assembly allow arbitrary pointer arithmetics, meaning that it is possible to obtain a reference to an
arbitrary index of memory, be that memory valid (allocated) or not. WHIRO does not keep track of which memory addresses
are valid—that would be too costly. Blocks of memory allocated in the heap are reported as a hash code of the contents of their
bytes, unless the type of these blocks contain pointers, e.g., like an array of arrays. Blocks of memory with a pointer type are
traversed recursively in the precise-heap mode. Pointers to the first address of a heap block are reported as hash codes (unless
the block contains pointers). Pointers to addresses past that point are reported as single-cell arrays with the type declared for the
pointer. Example 9 will clarify these decisions.
Example 9. In the Precise mode with heap tracking, WHIRO will print for the program in Figure 9 the following output:
*c main 1: 0x37...5F // Hash of a 16-byte array
*d0 main 1: 42 // Value stored in 8-byte word of type long
d1 main 1: 42 // Value of a variable of type long
c main 1: 42 // Int value of a variable of type char

The first line, for *c, is the hash code of a memory block stored in the heap. To find out this hash code, WHIRO verifies that
the address stored in *c has an entry in the Heap Table H . During the instrumentation, the Memory Monitor inserts code to
update H after Line 2 of Figure 9. This instrumentation updates H at runtime, right after the allocation is evaluated at Line
2. The other variables point to addresses that do not have an entry in H ; hence, they are printed as single cell arrays. Each of
these single cell arrays is printed with the base type of the variable that points to it. Notice that WHIRO does not do anything in
regards to unaligned memory accesses. If the program casts a pointer to an unaligned word in memory, that address will find no
correspondence within the Heap Table. Thus, the contents of that location will be printed as is. In this case, WHIRO will not fill
up unaligned bits with zeros, for instance.

int main() {
 char* c = malloc(16);
 long *d0 = (long*)(c+8);
 *d0 = 42;
 long d1 = (long)*(c+8);
 char *c1 = (char*)&d1;
 printf("%ld\n", d1);
 return 0;
}

An entry for the address pointed by c will be created in the Heap Table H

The address c+8 has no entry in H; hence, d0 is inspected as long[1]

c1 is inspected as char[1], because its address has no entry in the H

01
02
03
04
05
06
07
08
09

FIGURE 9 Program that casts pointers to the middle of a memory block with a different type. Variable c will be inspected as
char[16], because its address has an entry in the Heap TableH . Because it points to an array, it will be printed as a hash code.

To summarize WHIRO’s approach to deal with addresses pointing out to the middle of memory blocks, the following protocol
applies, when reporting data about symbol v of type tv in precise heap-tracking mode:

1. If tv is a primitive type, or an aggregate type without pointer fields, report it by value;
2. If tv is a pointer, or contains fields that are pointers, for each address p in v, do:

(a) If p contains an entry inH , inspect it recursively.
(b) Otherwise, let tp be the base type of p. WHIRO inspects the contents of p, e.g., ∗ p, as an array of type tp[1].

Currently, WHIRO has special treatment for stdlib functions that allocate memory (calloc, free, malloc, realloc,
reallocf, valloc and aligned_alloc). These functions update the Heap Table H . Notice that these functions have not
been modified in any way: WHIRO only understands that they perform memory allocation and deallocation. This combination
of a Heap Table H and a Type Table T lets WHIRO handle arrays that contain structs, even if said structs contain pointers

Magalhaes ET AL 13

to other arrays. WHIRO is able to traverse these data structures. Example 10 shows how WHIRO inspects a 3D-matrix in its
precise/heap-tracking mode.
Example 10. Figure 10 shows a program that allocates and initializes a three-dimensional matrix stored in the heap as an array
of arrays of arrays. Every invocation of the malloc function adds an entry to WHIRO’s Heap Table H . Only the allocations
at Line 13 of Figure 10 will not contain pointers. These blocks will be reported by the hash codes of their contents. The other
blocks will be traversed recursively.

#include<stdlib.h>
#define M 3
#define N 2
#define O 4

int main(){
 int*** m = (int***)malloc(M*sizeof(int**));
 for(int i = 0; i < M; i++)
 m[i] = (int**)malloc(N*sizeof(int*));

 for(int i = 0; i < M; i++){
 for(int j = 0; j < N; j++)
 m[i][j] = (int*)malloc(O * sizeof(int));
 }

 for(int i = 0; i < M; i++){
 for(int j = 0; j < N; j++){
 for(int k = 0; k < O; k++)
 m[i][j][k] = rand() % 100;
 }
 }
 return 0;
}

m[0][0]: 0x2882488809225114
m[0][1]: 0x599C2D2A5AA83C96
m[1][0]: 0x3424A75A2A2B9C59
m[1][1]: 0x48886F90444C7134
m[2][0]: 0xE14C1380B12C5232
m[2][1]: 0x7C5304E02C4B148C

The output of Whiro are six hash
codes of six 16-byte (4-int) arrays

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

FIGURE 10 The output of WHIRO when inspecting a 3D-matrix stored as an array of arrays of arrays in the heap. Every gray
box represents an entry in the Heap TableH .

4.2 Reading one element past the end of an array
The C Standard allows a comparison between a pointer and the first address past the end of an array (22 6.5.6/8). However,
this element cannot be dereferenced. Referring to the next address past the last address of an array is a common approach to
implement C++ iterators, for instance. Example 11 shows a program that uses this trick. This possibility poses a problem to
WHIRO, for our implementation cannot know if a pointer is valid or not. If the pointer is mentioned in the source code, this
pointer will be printed as part of the program’s visible state, once information is retrieved from the inspection point. In this case,
undefined behavior might ensue.
Example 11. Figure 11 shows a program that reads one element past the last address of an array to iterate through the array.
Pointer e cannot be dereferenced; however, it can be compared against another pointer.
WHIRO does not keep a list of valid memory blocks. Keeping this list would be overly expensive at runtime, for every memory

address would have to be tagged. Thus, if an invalid address is mentioned in the source code, it will be printed as part of the
data in a dynamic inspection point. Two problems emerge from this shortcoming. First, debuggers, like the one discussed in
Section 5.2, might try to compare these pointers, and the result of this comparison is meaningless. Second, when tracking heap
data, WHIRO might jump to whatever address it recognizes in such a pointer—possibly incurring into a segmentation fault. Our
implementation does not try to deal with the first problem: it is up to WHIRO’s users to handle false positives. To deal with the
second problem, WHIRO only prints pointers within specific ELF program segments: stack, heap, bss, data, and text. The

14 Magalhaes ET AL

int main() {
 int v[4];
 int *i;
 int *e;
 for (i = v, e = v + 4; i < e; ++i) {
 *i = 1;
 }
 return 0;
}

01
02
03
04
05
06
07
08
09

FIGURE 11 A program that reads a pointer past the last address of an array.

boundaries of these segments are given by global variables. This solution works for ELF binaries, but it is not portable across
different formats.

4.3 Dealing with Union Types
Programming languages like C and C++, or the LLVM intermediate representation, provide users with “union types”. These
types are sets formed by the union of two other types. Union types in C and C++ are defined by the union key word. Unfortu-
nately, these unions are not tagged, as it happens, for instance, with datatypes in functional programming languages like Haskell
and SML/NJ. Therefore, at runtime, WHIRO cannot know what is the intended meaning of a union type: any of its composing
types could be a valid representation. Example 12 illustrates this issue.
Example 12. Figure 12 shows a program written in C that defines a union of two types; chars and 32-bit floating point numbers.

void default_init(union element* e, char* str, int size) {
 if (is_float(str, size)) {
 e.f = -1.0625;
 } else if (is_char(str, size)) {
 e.c = 'a';
 }
 // ...
}

B

A

0x00000061
00000000 00000000 00000000 01100001

0xBF880000
1 01111111 00010000000000000000000{

{

01
02
03
04
05
06
07
08

FIGURE 12 Program that defines a union type. WHIRO prints instances of union types as sequences of bits. For clarity, we
show the sign, exponent and mantissa of the float pointer number, and split the char representation into four bytes (which is the
size of the largest element of this union type).

To allow the comparison between union types across two different versions of the same program, WHIRO prints them as
sequences of bits. In other words, the inspection of a value declared as a union type always yields the binary representation of
that type, using its largest composing part. Similarly, whenever a union type is inserted into the heap tableH , it is stored as its
largest component, even if that is not its intended meaning.
Example 13. Any instance of the union element in Figure 12 will be inspected in the sameway: as a sequence of bits, regardless
of how this union has been initialized. Thus, even though WHIRO does not keep track of the type used to initialize instances
of unions, WHIRO still supports comparing unions by inspecting their contents. In this case, the bits stored in the union can be
compared.

4.4 Shadowing Stack Variables
As mentioned in section 3.3, WHIRO reports all the variables local to the function where the inspection point is defined. For
variables which are not alive at said point, we extend their live range by injecting �-functions in the program. However, in some

Magalhaes ET AL 15

cases there are no definitions of a variable v from a function f in the predecessors of the inspection block. In this case, extending
the live range of v might involve the creation of many �-functions from the available definitions of v until the inspection
point—some of them with UNDEF values. To simplify this process, WHIRO shadows v to correctly track its value.
Shadowing a variable means duplicating in memory the value of that variable. The duplicate must be updated whenever the

original variable suffers an assignment. To implement shadowing, we allocate a slot sℎadow(v) in f ’s activation record. This
slot has the same type as v. Then the trace of v is traversed and the memory monitor injects code in f to store all the definitions
in sℎadow(v) right after they are computed. Since sℎadow(v) is created at the entry point of f with a special “undefined”
value, the shadow value is visible in all the basic blocks of that function. Therefore, that value can be read at any point within
f . Example 14 illustrates this modus operandi.
Example 14. Variable b in Figure 13 belongs into the local scope of function main. This variable is assigned at two different
program points which reach the static inspection point at Line 11. Furthermore, its declaration point, with an undefined value,
can also reach Line 11. Inspecting the value of b at Line 11 would require the insertion of three �-functions in the program
(between Lines 6-7, 8-9 and 10-11). Instead, WHIRO duplicates the value of b in memory.

int main(int argc, char** argv){
 int a = 10;
 int b;
 for(int i = 0; i < 5; i++){
 if(argc > 1){
 b = argc;
 while(b < a)
 b++;
 }
 }

 return 0;
}

SIP

// alloca(shadow_b)

// *shadow_b = arcg

// *shadow_b += 1

// print(*shadow_b);

01
02
03
04
05
06
07
08
09
10
11
12
13

FIGURE 13 Variable b would be shadowed. The value of the duplicated variable will be printed at the inspection point.

We shadow variables whenever undefined values can reach an inspection point. A special undef token is stored in the shadow
location. This token is unique for every occurrence of what, in LLVM jargon, is known as an “immediate undefined behavior”23
Sec.2. In this way, when comparing two different versions of the same program, WHIRO will match two instances of the same
undef token. We opted for this strategy for simplicity, as it makes it unnecessary to update the SSA-form representation of the
program. A more mature version of WHIRO probably will not resort to shadowing. Instead, keeping variables in SSA-like virtual
registers for as long as possible.

4.5 Inspecting State of Optimized Code
WHIRO is able to track the state of program variables in the face of some program optimizations. Such is possible as long as the
code optimization satisfies the following requirements:

• It preserves the existence of the inspection point. Inspection points refer to regions in the source code of a program. These
regions might not be preserved after optimizations such as dead-code elimination, which might erase sequences of basic
blocks in the low-level representation of the program.

• It preserves the existence of meta-information associated with high-level variables. Some optimizations might eliminate
any reference to variables present in the source code of the program. In this case, these variables will have no associated
state, and WHIRO will not show them when generating reports.

In our experience, many code optimizations implemented in LLVM preserve the metadata associated with program sym-
bols. Therefore, they pose no problems to WHIRO. However, optimizations such as dead-code elimination might eliminate this

16 Magalhaes ET AL

metadata. In the case of array scalarization, an optimization that removes metadata, we have been able to augment WHIRO with
enough information to still inspect the state of modified code. Array scalarization replaces a cell within an array with a tempo-
rary register. Readings and updates meant to happen over the array are diverted to the register. Example 15 shows an example
of this optimization in action.
Example 15. Figure 14 (Top) shows a program that performs updates on an array r. The update depends on the values of arrays
a and b. It is possible to scalarize r[i]. Figure 14 (Bottom) shows the program after scalarization takes place.

void sum0(int* a, int* b, int*restrict r, int N) {
 int i;
 for (i = 0; i < N; i++) {
 r[i] = a[i];
 if (!b[i]) {
 r[i] = b[i];
 }
 }
}

void sum1(int* a, int* b, int*restrict r, int N) {
 int i;
 for (i = 0; i < N; i++) {
 int tmp = a[i];
 if (!b[i]) {
 tmp = b[i];
 }

 r[i] = tmp;
 }

}

// scalarized:tmp/r

// scalarized:tmp/r

// scalarized:tmp/r

SIP

SIP // inconsistent_hash:r

// consistent_hash:r

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

FIGURE 14 (Top) Program before scalarization. (Bottom) Program after scalarization.

Scalarization renders the state of an array invalid at some program regions. As an example, the contents of array r differ
within the conditionals in Figure 14. If an inspection point exists in a region that contains scalarized arrays, then the contents
of these arrays cannot be compared. To deal with this problem, WHIRO adds metadata to the program, to indicate the places in
the code that contain scalarized arrays. When traversing the data at an inspection point that exists at such a place, WHIRO still
prints the hash of the scalarized array, albeit with a message to the user, indicating that the hash was taken from stale memory.

5 APPLICATIONS OF INSPECTION POINTS

This section presents three applications ofWHIRO, each using a different customization of the framework.We define the possible
customizations in Section 5.1, and go over the case studies in Sections 5.2–5.4.

5.1 Customizations
WHIRO can be customized along three dimensions: memory allocation, tracking graph, and SIP granularity. These dimensions
trade precision for performance. In this context, “precision” is ranked by the amount of information stored in the memory
monitor, and “performance” is ranked by the running-time overhead imposed by instrumentation.
Memory Allocation. This customization determines which memory region of the program will be tracked by inspection points.
WHIRO recognizes any combination of three regions:
STATIC: Tracks memory allocated statically.

Magalhaes ET AL 17

STACK: Tracks memory allocated on the stack.
HEAP: Tracks memory allocated in the heap.
Tracking Graph. WHIRO can either treat program symbols as isolated entities, or can relate them via the pointers present in
the instrumented code. These two possibilities give us the following customization modes:
FAST: Only local and static variables are tracked as isolated locations. Hence, this mode does not follow pointers when

presenting the program state.
PRECISE: WHIRO shows the graph formed by relations between pointers. Contrary to the previous mode, this customization

requires building the heap table.
WHIRO, in the PRECISE mode, works as a dynamic shape-analysis24 able to track, at running time, the context-sensitive
information that state-of-the-art analyses25,26 approximate statically—a fact that we state in Property 6.
Property 6 (Shape). Let �s be a static inspection point, and let �d be any related dynamic inspection point. WHIRO will produce
for �d an image of the heap with no more edges than a “may” version of shape-analysis would summarize for �s. Similarly, its
image should contain for any �d no less edges than a “must” version of shape analysis summarizes.

Proof (Sketch):WHIRO draws edges between heap blocks only if such blocks are reachable. Although the heap
table maintains freed addresses, edges that target such addresses are never reported

SIP Granularity. WHIRO allows the customization of static inspection points. The current implementation of WHIRO allows
the user to add a static inspection point before any LLVM instruction. However, for the sake of pragmatism, the experiments in
Section 6 only consider three possible locations for SIPs:
MAIN-RET: the program point immediately before the return point of the main routine.
ANY-RET: the program point immediately before the return point of any routine.
ANY-STORE: the program point immediately after any store instruction.

5.2 Debugging Aid
The construction of tools to debug compiler optimizations has been a common source of research in programming lan-
guages27,28,29. The ability to compare states in an inspection point that is common across different versions of a transformed
program lets us contribute along this direction.
Purpose: Given a program P plus a set of inputs, and an optimized version P ′ of it, compare the internal state of P and P ′

when these programs run with the given inputs. Use the result of this comparison to pinpoint bugs in the optimization. States
are compared via the dynamic inspection points (see Definition 2) that represent them. The comparison is possible for every
DIP that exists in P and in P ′. Finding equivalent DIPs is simple: two DIPs, one from P , the other from P ′, are equivalent
if they are originated by the same static inspection point. To compare the program state from two equivalent DIPs, static and
stack-allocated variables are matched according to their names in the source code of the subject program. Heap variables are
matched according to their allocation sites. Multiple nodes from the same allocation site are matched by the allocation order. It
is possible that an optimization removes variables or heap nodes from the program state. Thus, the comparison happens only
for those variables and nodes that exist simultaneously in P and in P ′.
Challenge:We are comparing two potentially very different versions of the same program. There is not a perfect match between
inspection points: optimizations like inlining remove some inspection points in the ANY-RET mode. There is not a perfect match
between program symbols neither, as optimizations like constant propagation remove symbols.
Instrumentation mode: To maximize the likelihood that differences in program state are observed, we instrument every
memory region (STATIC+ STACK+ HEAP), using the PRECISE mode, at maximum granularity (ANY-RET).
Results:We deliver an approximate solution for the problem of bug finding: our debugger only matches program points that are
equivalent in both versions of the program. We are able to highlight program symbols that have been erased in the optimized
version of the program, to reduce false positives. Auxiliary variables created by the compiler are not considered in this com-
parison, for they are not associated with high-level debugging information, nor do they have exact correspondence between P
and P ′. In Section 6.6 we show that this usage of WHIRO has been able to detect bugs injected in LLVM’s implementation of
constant propagation.

18 Magalhaes ET AL

5.3 Adding Verification Outputs to Benchmarks
The synthesis of benchmarks is an important program in the construction of predictive compilers30,31,32. A common technique
to synthesize benchmarks is to mine code from open-source repositories33. Predictive compilation often requires thousands of
benchmarks. As an example, EXEBENCH contains 700K executable C functions34. As pointed out by Armengol et al.34, for
verification purposes, a benchmark must have some output. By comparing said output with a reference, compiler engineers
have confidence in the validity of any test produced with that benchmark. However, adding code to produce some output into
thousands of benchmarks is not practical. Such tasks must be accomplished automatically, andWHIRO can provide such support.
Purpose: Given a program P , add output to it, by printing the state of static and local variables after execution.
Challenge: If instrumentation is too intrusive, the results obtained through benchmarking P might be subject to “probe effects”.
These effects emerge when inspecting the program provokes unintended alterations of its behavior. Therefore, the performance
of P must be preserved as much as possible.
Instrumentation mode: To reduce probe effects, we use WHIRO to instrument MAIN-RET’s SIPs. It reads STATIC and STACK
memories in the FAST mode.
Results:We have applied the above customization of WHIRO onto 137 executable programs downloaded from ANGHABENCH.
Each benchmark was tested with 10 different inputs. Outputs were produced for all the 137 programs, in 1,359 executions (out
of a total of 1,370). Property 4 was verified when repeating this experiment. Each benchmark consists of a driver plus a function
(which is the benchmark proper). Not counting the driver, which always gives us the same outputs, on average WHIRO inspects
7.8 variables per function, with a minimum of 2 variables and a maximum of 32 variables. The instrumented benchmarks have
been returned to the maintainers of ANGHABENCH, and are now publicly available.

5.4 Data Visualization
Tools able to provide graphic representation of the heap are useful for program understanding and debugging35. Viewing data
structures and other program elements in a graphical format makes it easier to analyze the state of memory, recognize patterns,
and observe the relation between different allocated blocks.
Purpose: Adapted WHIRO to render a visual representation of the graph determined by relations between pointers in the heap
in a program.
Challenge: To the best of our knowledge, all the techniques discussed in the literature to visualize program state deal with type-
safe languages with managed memory. Java is the usual target35,36,37, although there are also DSLs conceived to this end38,39.
Tracking relations between pointers in C or C++ is non-trivial, due to the difficulty to distinguish memory addresses from scalar
types. Previous work that attacked this task required users to use special annotations to indicate which software events should
be visualized40.
Instrumentation mode: We customize WHIRO with the following configurations: the tracking graph is PRECISE; the SIP
granularity is ANY-RET; and considering the HEAP memory allocations.
Results: Figure 15 shows heap snapshots produced with our adaptation of WHIRO. To ease visualization, we are showing only
nodes stored in the heap. Currently, we can visualize the heap of all the programs in the MIBENCH collection, for instance.
Graphs are produced in DOT format. Users can render them using different graph visualization algorithms. We are not able to
distinguish pointer relations created by non-pointer types, like it happens in the infamous doubly-linked XOR list. As an example,
when given the program in Figure 1 of Banerjee et al.10, WHIRO prints a series of unconnected blocks with the xorlist type.

6 EVALUATION

This section evaluates the ideas presented in this paper. To this effect, we investigate the following research questions:
RQ1: What is the overhead that our instrumentation adds to the compilation time?
RQ2: What is the runtime overhead imposed by our transformation on the instrumented programs?
RQ3: How much extra memory does WHIRO use?
RQ4: How does the size of the instrumented program grow in relation to its original size?

Magalhaes ET AL 19

b) Hash-Tablec) Binary Search Tree

a) MiBench's Patricia

FIGURE 15 (a) Snapshot showing the two disjoint data structures in MIBENCH’s Patricia, after the first invocation of
pat_search returns with the test input. (b-c) The two disjoint graphs in the heap of a program that copies a binary tree into a
hash table. Collisions are stored in a linked list.

RQ5: How does the number of static inspection points impact WHIRO’s instrumentation time, or the running time and code
size of instrumented programs?

RQ6: Can our technique be used to detect actual bugs in compiler optimizations?
Software: Instrumentation is implemented on LLVM version 10.0.0. Data structures that store the auxiliary state are imple-
mented in C. They are linked statically with the bytecode that LLVM produces. The experimental evaluation uses Linux Ubuntu
64-bit version 18.04.5 LTS. Running time and memory usage are collected via Linux’ built-in time command. Numbers of
LLVM instructions are collected using LLVM’s –instcount. The other statistics reported in Section 6.4 are gathered directly
by the instrumentation pass.
Hardware: Experiments run on an 8-core Intel i7-8565U CPU at 1.80 GHz, and 8GB of RAM (DDR4) at 2,400MHz.
Benchmarks: We chose MIBENCH 15 to evaluate our techniques. We use the version of MIBENCH available in the LLVM
test repository, which contains 16 benchmarks. We have constructed inputs for these programs using a synthesizer available at
https://github.com/ekut-es/mibench, to ensure that each benchmark runs for more than 1.0 second when compiled with clang
-O0 (v10.0). We failed to meet this criterion for MIBENCH’s Patricia, which runs for about half-a-second with the largest
input that we found.
Methodology: Experiments in sections 6.1, 6.2, and 6.3 report averages of 10 executions. For each benchmark, we measure its
running time 12 times, and discard the fastest and slowest executions. The elimination of the slowest and fastest samples per
benchmark allows us to mitigate the impact of random effects on the experiments, such as cold-start execution. For instance,
the first sample usually runs more slowly, due to the time to load shared libraries in memory. The programs were compiled with
mem2reg and with mergereturn. The first pass maps memory locations to virtual registers. We have used it to speed up the
execution of the experiments: we had to run each programmultiple times per configuration ofWHIRO; mem2reg tends to shorten
our running times by almost half. The second pass, mergereturn, ensures that every function will have a single exit point. This
property simplifies the task of finding static inspection points automatically. Nevertheless, none of these passes is necessary to
apply WHIRO. Results are considered statistically significant within a confidence level of 99% via a Student T-Test.

6.1 RQ1: Compilation Overhead
One of the design principles of WHIRO is to move to compilation time as much instrumentation overhead as possible. On the one
hand, this strategy reduces the overhead that our inspection points impose onto executable programs, as we shall demonstrate
in Section 6.2. On the other hand, it extends compilation time. This section analyzes this impact.

https://github.com/ekut-es/mibench

20 Magalhaes ET AL

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	 clang-O0	 Main	Only	

Stack	Only	 Static	Only	

Heap	Only	 Fast	

Precise	

ba
sic

math

bit
co

un
t

su
sa

n
jpe

g
lam

e

typ
es

et

dij
ks

tra

pa
tric

ia

str
ing

se
ar

ch

blo
wfis

h

rijn
da

elsh
a

ad
pc

m

CRC32 FFT
gs

m

In
st

ru
m

en
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

FIGURE 16 Time to instrument programs (in seconds). For reference, we provide the time of compiling each program with
clang -O0 -g.

Discussion
Figure 16 shows the time required to instrument the different programs in MIBENCH. For reference purposes, we also show the
time taken to compile each program with clang -O0 -g. The instrumentation time is shorter than standard compilation time
in every case2. The overhead that instrumentation adds onto compilation depends primarily on the number of static inspection
points. The more SIPs a program contains, the larger the number of interventions that WHIRO carries out in the code of said
program. Thus, the larger the program, the larger the instrumentation overhead. Consequently, MAIN-RET incurs the smallest
slowdown in compilation time, because it inspects only one function, e.g., main(). Notice that the instrumentation overhead,
even at the MAIN-RET granularity, is not constant: WHIRO still must traverse the main function looking for return points.
Furthermore, the number of local variables within this function bear an impact on instrumentation time, as we explain next.
Number of Variables to be Inspected.The instrumentation time depends also on the number of variables that must be inspected.
For instance, STATIC tends to have a small impact on the compilation time, because programs usually have less static variables
than local and heap variables. As another example, lame is about 6x smaller than typeset, considering the number of LLVM
bytecodes that these programs contain; however, instrumenting the main routine of lame takes longer, for it contains more local
variables.
FAST and PRECISE. According to Figure 16, the slowest absolute instrumentation time was 7.26 seconds using the PRECISE
mode in MIBENCH’s typeset. Yet, just to compile typeset without any optimization already takes 33.55 seconds. Figure 25
provides complete ratios. Notice that the FAST and the PRECISE instrumentation modes increase compilation time by approxi-
mately the same amount: these twomodes inspect local and static variables in the same number of SIPs. There are two differences
between them. First, the PRECISE mode adds to each SIP a call to a routine to traverse the heap. Second, the PRECISE mode adds
to each site where memory is allocated a routine to update the Heap Table.

2Any program instruction can be considered a static inspection point. When the number of SIPs approaches the size of the program, the instrumentation time might
exceed the compilation time. We provide some evidence regarding this fact in Section 6.5.

Magalhaes ET AL 21

6.2 RQ2: Running Time Overhead
WHIRO imposes an overhead on executable programs due to: (i) keeping the auxiliary state; and (ii) shadowing stack-allocated
variables. This section analyzes this impact.
Discussion
Figure 17 shows how the performance of executable programs varies depending on the instrumentation mode. Points in Figure
17 show the ratio between the execution time of the instrumented program and its original version. Overhead increases with the
granularity of the inspection; hence, PRECISE yields the slowest executables. This outcome is to be expected, because PRECISE
inspects all the variables in a program and updates the heap table during execution. STATIC is also slow in general, because this
mode inspects static variables at every function call (unless MAIN-RET only is used). MIBENCH’s dijkstra accounted for the
largest overheads. The slowdown, in this case, was caused by excessive heap usage: the program manipulates a graph stored
dynamically. There were cases in which the instrumented program was faster than its original version. However, for all these
cases we found p-values greater than 0.01; hence, we cannot consider them statistically significant.

0.8	

0.9	

1	

1.1	

1.2	

Main	Only	 Stack	Only	 Static	Only	 Heap	Only	 Fast	 Precise	

dijkstra:
Heap only: 39.13x
Precise: 38.23x

2.2
0 5.5

2

6.9
0
3.4
0

5.5
5

10
.63

1.0
6
0.5
3

2.5
6

1.3
2
2.7
1

1.9
8

4.3
9
1.7
8
4.0
5 5.4

6

In
sp

ec
tio

n
ap

pr
oa

ch
 /

or
ig

in
al

 p
ro

gr
am

ba
sic

math

bit
co

un
t

su
sa

n
jpe

g
lam

e

typ
es

et

dij
ks

tra

pa
tric

ia

str
ing

se
arc

h

blo
wfis

h

rijn
da

el sh
a

ad
pc

m

CRC32 FFT
gs

m

FIGURE 17 Increase of execution time (with relation to the original program). Numbers in boxes denote the running time of
the original program (in seconds).

Overhead vs. Size: Unless the heap is inspected, the overhead of WHIRO tends to be constant: some state must be recorded
for each local variable that the program uses; and the number of local variables in a program is proportional to the size of said
program. Thus, most of the overheads in Figure 17 orbit around 1.0. We emphasize that there is no direct correlation between the
impact of WHIRO on the running time of programs, and the size of said programs, measured in terms of the number of LLVM
instructions or number of available static inspection points. To support this statement with data, Figure 18 shows the overhead3
that WHIRO imposes on ten large4 programs in the LLVM test suite when running at its highest granularity—the PRECISE mode.
Figure 18 contains two benchmarks from MIBENCH: typeset and lame, which are used to answer other research questions

throughout this paper. The remaining programs come from different benchmark collections present in the LLVM test suite,
and are only mentioned during our analysis of RQ2 in this section. In particular, Figure 18 uses a version of the jpeg filter

3Figures 17 and 18 were produced using different methodologies. Figure 17 uses only programs fromMIBENCH. There exists an input generator for MIBENCH, which
we could use to ensure that most programs would run for more than one second. This apparatus does not exist for the other programs from the LLVM test suite. Thus,
Figure 18 uses the original inputs that LLVM provides for each benchmark, including typeset and lame. Consequently, running times in Figure 18 are much shorter than
in Figure 17. In both cases, numbers are averages of 10 executions.

4We chose the ten largest benchmarks in the LLVM test suite that we could run outside the LLVM test framework. Size is measured as the number of lines of C code.
Following this criterion, we had to disregard four benchmarks: perl, p2c, TimberWolfMC and sqlite3. We could not compile the former two programs, even without
WHIRO, and we did not find inputs to run the other two.

22 Magalhaes ET AL

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

tre
ec

c
lam

e
jpe

g

(m
ed

ia)
gs

og
ge

nc

SMG20
00 JM

SPASS

Clam
AV

typ
es

et

Original Program Precise

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

tre
ec

c
lam

e gs

og
ge

nc

SMG20
00 JM

SPASS

Clam
AV

typ
es

et

16
,51
6 35

,63
9

39
,44
6

71
,64
8

12
0,5
22

1.0
0

96
.10

78
.40

2.0
0

76
.50

1,4
12
.70

60
.10

1,1
11
.30

23
9.1
0

10
8.2
0

31
,69
1

35
,80
9

65
,93
8

83
,90
0 25

0,2
13

Number of SIPs Overhead

jpe
g

(m
ed

ia)

(a) (b)
R

un
ni

ng
 ti

m
e

(in
 m

ill
is

ec
on

ds
)

N
um

be
r o

f S
IP

s
W

hi
ro

(s
)/O

rig
in

al
(s

)

FIGURE 18 (a) Overhead that WHIRO’s PRECISE mode imposes onto the ten largest benchmarks available in the LLVM test
suite. Numbers in black boxes show the running time of the original programs (in milliseconds). (b) Number of static inspection
points per benchmark, compared to the average overhead observed on these benchmarks when WHIRO runs in PRECISE mode.

fromMEDIABENCH, which differs from the version available in MIBENCH, being considerably larger. WHIRO’s overhead, when
applied on its PRECISE mode, ranges from 0.98x, in JM to 6.50x, in MEDIABENCH’s jpeg. Overhead is measured as the ratio
between the running time of the instrumented program and the original program. In the case of JM we did not observe a speedup:
rather, there is no statistically significant difference between the original and the instrumented benchmark. The geometric mean
across running time variations is 1.70x; the median is 1.08x. These results are on a par with those seen in Figure 17.
Printing Data Overhead. The largest overhead observed during our experiments happened when MIBENCH’s dijkstra was
inspected in WHIRO’s PRECISE mode: we recorded a slowdown of 44x. With only 267 LLVM instructions, dijkstra is the
second smallest benchmark in the MIBENCH suite. However, it stores a large quantity of data in the heap: even printing this
data at every static inspection point is not practical. To give the reader some perspective on this observation, we analyze the
cost of printing all the data that WHIRO records for some small benchmarks. Figure 19 compares the running time of three
benchmarks: stringsearch, sha, and FFT with and without counting the time necessary to print all the inspection traces.
Printing obviously increases the running time in all inspection modes. This increase is more noticeable in the FAST and PRECISE
modes, which inspect values stored in all memory regions. Time grows, in the worst case, by factors of 2.7x, 35.7x and 24.8x
in stringsearch, sha, and FFT, respectively.

6.3 RQ3: Memory Overhead
The dynamic components of the Memory Monitor exist during all the execution of a program. Therefore, inspection points
are expected to increase memory consumption. To read peak memory usage, we use Linux’ time -v and report memory
consumption as the “maximum resident set size”.
Discussion
Figure 20 plots the memory consumption ratio between instrumented and non-instrumented programs. In 81% of the bench-
marks, memory consumption increased by no more than 1.3x, and in 75% of them, this overhead was less than 1.1x. The
inspection modes which use more memory are PRECISE and HEAP. In addition to the type table T , these instrumentation modes
keep the heap tableH in memory. Large memory usage was observed in dijkstra when using either of these instrumentation
modes. The jpeg program was the benchmark that experienced the largest growth in memory consumption not related to heap

Magalhaes ET AL 23

 No Print Print No Print Print No Print Print

main 2.59 2.85 1.97 2.89 4.09 4.24

stack 2.56 4.35 2.09 57.44 4.23 3.62

static 2.62 6.75 1.97 2.31 3.95 92.03

heap 2.59 2.67 1.95 1.94 4.02 4.32

fast 2.56 5.65 2.13 57.80 3.99 85.90

precise 2.56 6.88 2.11 75.26 3.98 93.83

stringsearch sha FFT

FIGURE 19 Time to run the benchmarks (in seconds) with and without counting the time to print inspection traces.

0.9	

1	

1.1	

1.2	

1.3	

Main	Only	 Stack	Only	 Static	Only	 Heap	Only	 Fast	 Precise	

ba
sic

math

bit
co

un
t

su
sa

n
jpe

g
lam

e

typ
es

et

dij
ks

tra

pa
tric

ia

str
ing

se
arc

h

blo
wfis

h

rijn
da

el sh
a

ad
pc

m

CRC32 FFT
gs

m

jpeg
Main: 1.94x
Stack: 1.96x
Static: 1.95x
Heap: 2.00x
Fast: 1.96x
Precise: 2.03x

23
18

18
73

54
92

21
50

32
92

81
52
0

19
90

13
51
3

19
19

18
72

18
18

18
55

18
76

18
55

29
36

18
81

In
sp

ec
tio

n
ap

pr
oa

ch
 /

or
ig

in
al

 p
ro

gr
am

dijkstra
Heap: 153x
Precise: 153x

patricia
Heap: 4.87x
Precise: 4.89x

FIGURE 20 Increase in memory consumption (with relation to the original program). Numbers in boxes denote memory
consumed by the original program, in Kilobytes.

allocation. Memory consumption has increased, in this case, due to the large number of entries in jpeg’s type table: 2,560 in
total. Nevertheless, notice that this expansion is relative to the amount of memory that the benchmark requires without instru-
mentation. In absolute terms, this growth is small, when compared to the memory requirements of larger benchmarks, such as
typeset, which uses almost 40x more memory than jpeg.

6.4 RQ4: Code-Size Overhead
Instrumentation increases code. This boost is due to the new routines that access the T andH tables, due to the variables created
to shadow stack-allocated data, and due to code to print the values of variables at inspection points. In this section, we analyze
this growth. The size of code is measured in the number of LLVM instructions.
Discussion
Figure 21 shows the ratio between the sizes of instrumented and original programs in MIBENCH. The FAST and PRECISE
instrumentation modes are, as expected, the most prodigal, increasing code size by factors of almost 4x in lame. Growth in
the other benchmarks is more moderate, but typically above 2x for these modes. STATIC also tends to increase code-size by

24 Magalhaes ET AL

1	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1.7	

1.8	

1.9	

2	

Only	Main	 Stack	Only	 Static	Only	 Heap	Only	 Fast	 Precise	

ba
sic

math

bit
co

un
t

su
sa

n
jpe

g
lam

e

typ
es

et

dij
ks

tra

pa
tric

ia

str
ing

se
ar

ch

blo
wfis

h

rijn
da

elsh
a

ad
pc

m

CRC32 FFT
gs

m

lame
Static: 3.78x
Fast: 3.91x
Precise: 3.92x

12
7

26
7

36
8

51
1

51
3

59
4

68
5

83
5

87
0
3,3
79

5,4
53

9,2
96

11
,49
9

40
,02
3

41
,92
8 25

9,9
72

In
sp

ec
tio

n
ap

pr
oa

ch
 /

or
ig

in
al

 p
ro

gr
am

FIGURE 21 Code growth (with relation to the original program). Numbers in boxes denote the number of LLVM instructions
in the original program, compiled with mem2reg. Benchmarks are sorted by the size of the original program.

substantial margins, because static variables are inspected in every function call. The MAIN-RET mode accounts for the smallest
code increase, because an inspection point is created in only one function.
Factors of Code Growth. We conducted an experiment aiming to investigate whether there exist features of programs that
correlate well with code growth. Figure 22 summarizes these results. MIBENCH contains 1,228 functions spread across 16
benchmarks. Most variables, 7,130, are stack allocated; 3,582 variables are non-static pointers and 788 are static (of any type).
Figure 22 shows that the number of functions and variables is strongly correlated with code growth when inspecting only the
stack or the heap. In all these cases, Pearson R2 is above 0.95. When inspecting only static memory, the number of variables
and the number of original instructions are the determining factors. In this case, R2 is always above 0.85. When inspecting the
entire program—with either the FAST or the PRECISE modes—instructions are the factor that determines growth, with an R2

value of 0.86.

 Total Mean R^2 Total Mean R^2 Total Mean R^2

main 891 52.4 0.80 1 1 X 0.29

stack 7130 419.4 0.97 0.97 0.73

static 788 46.4 0.87 0.57 0.85

heap 3582 210.7 0.95 0.97 0.91

fst/prc 7918 465.8 0.63 0.60 0.86

InstructionsVariables Functions

38
8,
00
3

22
,8
23
.7

76
.7
5

1,
22
8

FIGURE 22 Relations between program features and code growth. We let fst = FAST and prc = PRECISE.

6.5 RQ5: Number of Static Inspection Points
The impact of WHIRO on the behavior of programs depends on the number of static inspection points instrumented. This section
evaluatesWHIRO varying fractions of injected SIPs in programs to analyze its impact on compilation time, running time and code

Magalhaes ET AL 25

size. To vary the number of static inspection points, we use the three different instrumentation modules currently implemented
in WHIRO: MAIN-RET, ANY-RET and ANY-STORE, which are described in Section 5.1.
Discussion
Figure 23 shows how the number of static inspection points impacts the behavior of three different benchmarks from the LLVM
test suite: JM, gs and SMG20005. The choice of benchmarks is arbitrary. These programs also appear in Figure 18. The number
of SIPs impacts most directly WHIRO’s instrumentation time. As already discussed in Section 6.1, the more inspection points a
program contains, the longer WHIRO will take to instrument it.

JM Inst. Time (sec) Running Time (sec) Program Size (bytes) SIPs I. Time R. Time Size
MAIN-RET 0.66 0.06 1,003,800 1

1.00 0.93 0.36ANY-RET 5.75 0.06 1,070,408 453
ANY-STORE 132.62 0.07 1,051,896 3,496

gs Inst. Time (sec) Running Time Program Size (bytes) SIPs
MAIN-RET 0.35 0.40 685,224 1

0.98 0.96 0.66ANY-RET 2.20 0.41 738,080 742
ANY-STORE 13.17 0.51 730,776 2,289
SMG2000 Inst. Time (sec) Running Time Program Size (bytes) SIPs
MAIN-RET 0.52 2.88 840,880 3

1.00 -0.28 0.34ANY-RET 9.41 4.83 939,168 400
ANY-STORE 135.86 3.06 907,120 2,442

FIGURE 23 Impact of the number of static inspection points on different costs associated with the usage of WHIRO. The last
three columns show the Pearson Coefficient (R2) between the number of SIPs and the instrumentation time, the running time
and the size of programs, respectively.

Correlations. The last three columns of Figure 23 show the Coefficient of Determination (using Pearson’s coefficient) between
the number of static inspection points and the different metrics evaluated in this section. The correlation between the number of
SIPs and the instrumentation time is almost a perfect 1.0 in all the three benchmarks. The correlation between the number of SIPs
and the running time of the instrumented programs is also strong, except for SMG2000. In this case, it is cheaper to instrument
stores than return points. This result is not statistically noisy: it is statistically significant with a confidence level of 0.01. Code
growth is related to the number of SIPs; however, the correlation is weaker. Even considering ANY-STORE, the number of SIPs
is relatively small if compared to the number of potential SIPs in the program (which Figure 18 shows). Nevertheless, the more
SIPs we have, the larger the code growth; hence, rank correlation is high: the Kendall Coefficient relating number of SIPs and
code growth is a perfect 1.0 in the three cases.

6.6 RQ6: Potential as Debugging Aid
As mentioned in Section 5.2, WHIRO can be used to pinpoint errors in program transformation techniques like compiler opti-
mizations. A state mismatch between two versions of a program processing the same input is a strong indication of a bug. To
analyze the effectiveness of WHIRO as a debugging aid, we manually inserted a bug into the LLVM’s sparse conditional con-
stant propagation pass. We altered the optimization lattice by changing the semantics of its meet operator. Whenever we have
two constants c1 ∧ c2, with c1 = c2, we propagate a random value instead of the constant. Programs were instrumented using
PRECISE mode.

5In some cases, LLVM’s mergereturn unifies the exit points in a function by creating an unreachable basic block that post-dominates all the other blocks in the
function. This may happen in face of multiple routines that halt the program execution, such as C standard exit. In this case, WHIRO creates SIPs before each one of the
halting calls to ensure that the state will still be reported. Therefore, there might be more than one inspection point when instrumenting the return point of a function. We
can observe that in SMG2000, in which WHIRO creates 3 SIPs even when inspecting only main.

26 Magalhaes ET AL

8 4 1 2 1

21 1 1 2 1

2 0 10 2 0

Number of different constants found in the program’s IR

Miscomputations of the meet operator

Named variables with divergence states reported by WHIRO.

bas
icm

ath

sus
an

jpe
g

FFT gsm

FIGURE 24 Let P be a program, P ′ a version of P optimized by the correct version of constant propagation, and P ′′ a version
of P optimized by the buggy implementation of constant propagation. The first line shows how often the intermediate repre-
sentations of P ′ and P ′′ contained different constants. The second line shows how often pℎi-functions were wrongly evaluated
by the buggy implementation of constant propagation. The third line shows how many named variables, i.e., a variable with a
name in P ’s source code showed different values at corresponding DIPs in P ′ and P ′′.

Discussion
The unsound implementation of constant propagation caused bugs in five, out of 16 MIBENCH programs. Opportunities for
injecting bugs did not occur in the other benchmarks. Figure 24 summarizes results. The first row reports the number of different
instructions found in a diff between programs compiled with the correct and the buggy implementation of constant propaga-
tion. The second row reports how often a wrong value was computed in the incorrect implementation of constant propagation.
We say that a value was “incorrectly computed” whenever the buggy implementation of constant propagation evaluates a �-
function6 such as v = �(v1,… , vn), where every variable vi, 1 ≤ i ≤ n is bound to the same constant c. In this case, the wrong
implementation of the meet operator will bind variable v to a random constant, instead of c. In total, such wrong propagations
happened 26 times throughout programs in MIBENCH.
The last row shows the number of program variables identified by WHIRO with incorrect values due to the bug. WHIRO has

correctly identified 14 mismatches. The correspondence between mismatches identified by WHIRO and wrong evaluations of
the meet operator is not perfect because: (i) WHIRO only prints out results for named variables, that is, variables that have a
name in the program’s source code. Thus, auxiliary locations created by the compiler are not tracked; and (ii) WHIRO, in the
ANY-RET mode, only compares state at the return point of functions. Thus, WHIRO, in this experiment, will report a mismatch
for a variable u that exists in the intermediate representation of LLVM if:

1. Variable u can be replaced by a constant known at compilation time.
2. Variable u depends on a variable v = �(v1,… , vn) that joins variables that are constants known at compilation time.
We emphasize that every bug captured by WHIRO is a true positive, meaning that a mismatch in the program state is caused

by a miscomputation of the meet operator used in constant propagation. However, the same miscomputation can cause multiple
divergences in the program state, because several variables can depend on the same miscomputed value. Such is the case, for
instance, of jpeg, where a single miscomputation has caused divergences in ten variables that have names in the program’s
source code. On the other hand, it is also possible that miscomputations do not emerge in the visible program state. Such is the
case in basicmath, susan and gsm. In this case, the values that were wrongly computed did not bear influence on the values
of any variable that has a name in the program’s source code.

6.7 Summary of Results
Figure 25 summarizes the key results discussed in this section. For reference, the 16 programs in MIBENCH, together, give us
376,338 LLVM instructions when compiled with clang -O0 -g and optimized with two passes: mem2reg and mergereturn.
It takes 115 seconds to compile these programs (with the above flags) in our setup.

6Section 3.3 explains the semantics of these special instructions.

Magalhaes ET AL 27

RQ1-Cmp RQ2-Exe RQ3-Mem RQ4-Size Size

Main 0.01 1 1.07 1.06 381,129

Stack 0.02 1.04 1.07 1.21 409,706

Static 0.01 1 1.07 1.32 720,339

Heap 0.01 1.31 1.63 1.12 395,882

Fast 0.03 1.04 1.07 1.48 747,094

Precise 0.03 1.34 1.63 1.48 747,439

FIGURE 25 Summary of results.Cmp: compilation time (Sec. 6.1). This column is the geometric mean of 16 ratios comparing
the instrumentation time with the compilation time (clang -O0 -g). Exe: runtime overhead (Sec. 6.2); Mem: Memory con-
sumption (Sec. 6.3); Size: code size (Sec. 6.4). These three columns report geometric means of 16 ratios between instrumented
and original program. Size: number of LLVM instructions in the 16 benchmarks.

7 RELATEDWORK

In terms of purpose, the ability of inspecting program state supports the implementation of lightweight forms of program ver-
ification. In terms of implementation, the techniques discussed in this paper are heavily inspired by previous work on garbage
collection for type-unsafe languages. In the rest of this section, we discuss how our work fits in these two subfields of the
programming languages literature.

7.1 Compiler Correctness
The area of program verification is immense. Although our work does not deliver formal guarantees about the behavior of
programs, it helps developers to debug compilers in at least three ways: (i) automatically producing outputs for benchmarks; (ii)
revealing program state to developers; and (iii) checking the behavior of compiler optimizations. Figure 26 outlines where such
purposes fit in the broader area of program verification.
Some program generators add verification code to the benchmarks produced. CSmith42, for instance, uses a checksum based

on the values of global non-pointer variables, determined at the end of the program’s execution. This checksum roughly cor-
responds to the lowest level of granularity that we provide: inspection at the end of the program based on statically allocated
variables. Richards et al.47 also insert verification code in their synthetic JavaScript benchmarks to record state at multiple points
of program execution. Yang et al.48 developed an approach which automatically instruments Register Transfer Level (RTL)
modules to assist in debugging of high-level synthesis tools. Their technique reads the execution traces of a program to gather
the expected values for the operations in that program. Yang et al then insert verification code during the generation of the
RTL module, including information about the equivalence between the RTL and the LLVM IR of the program. Nevertheless,
the set of programs that can be successfully verified by Yang et al.’s technique is substantially smaller than the set of programs
that WHIRO handles, because Yang et al.’s implementation is restricted to a specific subset of RTL instructions. In contrast to
our work, these techniques are tightly coupled with the generation of synthetic codes. Verification is inserted onto synthetic
programs, at the time these programs are produced; not in general code, like Section 5.3 shows.

7.2 Reverse Engineering of Low-Level Code
In many ways, by inspecting the internal state of programs, WHIRO supports a form of reverse engineering. There exists a vast
literature on the reverse engineering of binary code49,50,51,52. The goal of this kind of techniques is to to recover high-level control
structures and types out of the analysis of low-level binary code. In this sense, this work differs from that literature in several
ways. First, WHIRO is a dynamic analysis tool. Second, WHIRO requires recompilation, whereas one of the ultimate goals of
binary disassemblers is to reconstruct programs without looking into any source-code information.
Nevertheless, there exist dynamic analyses for reverse engineering of binary code53,54. These techniques typically build the

so-called dynamic slices of a program55,56. Given a program P , plus an input I of it, the dynamic slice of P in regards to I is

28 Magalhaes ET AL

P

Translation Validation
[Pnueli’98, Necula’00, Lopes’21]

C(P)

C(P)(I)

Equivalence
Module Input
(EMI) [Li’14]

Compilation

Exec.

I

CSmith
[Yang’11]

Optimization

O(C(P)) Exec. C’(P)(I)

State
Comparison
[This paper]

Formal Verification
[Leroy’06]

P1…Pn

C

O

FIGURE 26 Comparison of different techniques to find or prevent bugs in compilers. A formally verified compiler (C) is
correct by construction41. Program synthesizers such as CSmith42 create programs (P) that are given as inputs to compilers to
test them. Variations of P , e.g., P1,… , Pn, can be created via program mutation43,44. Translation validation45,23,29,28,46 checks
that the compiler’s output, e.g., the compiled program C(P), is correct. Our technique can be used to check the outcome of
compiler optimizations (O). Given a compiled program Pc = C(P), and its optimized version Po = O(C(P)), inspection points
let developers match the final state of Pc and Po for any input I .

the subprogram formed by the instructions of P that run when P executes after reading I . The reports produced by WHIRO are
not dynamic slices in this sense. However, they could be thought as dynamic data slices, because they contain the subset of data
(in contrast to the subset of instructions) that is visible at a certain execution point.

7.3 Garbage Collection in Uncooperative Environments
This work was inspired by implementations of garbage collectors for C and C++. These programming languages do not feature
garbage collection by default. Nevertheless, different research groups have designed and implemented garbage collectors for
them. This task is challenging because the type systems of these languages do not prevent values of numeric type from being
treated as pointers. Probably, the most well-known implementation of garbage collection for C is due to Boehm et al5,6. Those
ideas have been extended along different directions7,8, and still motivate current research efforts9,10. All these implementations
traverse the graph formed by heap-allocated pointers, although they differ on how they recognize said graph. Heap Tracing is
also how we collect heap state. The ideas discussed in this paper bear at least two similarities with the work of Boehm et al5,6,
namely:

1. One of the key requirements of Boehm et al’s work was to limit the overhead imposed by the garbage collector. If the
collector is not used, its overhead is barely perceived. Such is also the case of WHIRO, as empirically demonstrated in
Section 6.2.

2. Boehm et al accept imprecisions. In particular, they do not try to identify integers used as pointers. In other words, neither
integers nor pointers are tagged in any way; nor static analyses are required to separate them. Such is also the case of
WHIRO, as explained in Section 5.4.

Nevertheless, in its maximum precision, WHIRO departs from the classic implementation of Boehm et al. Such divergence
happens because, to trace the heap, we organize heap-allocated data into a table (the table H introduced in Definition 4). The
heap table not only lets WHIRO traverse the graph formed by program pointers, but also associates these pointers with user-
defined names and line locations, for presentation purposes. In contrast, the need for debugging information has never been a
requirement in typical implementations of garbage collectors. Thus, at a high level of granularity, our tracing technique would
not be a viable alternative to garbage collection in an uncooperative environment: the need to maintain and access a global table
imposes a prohibitively large overhead onto programs, as seen in the last row of Figure 25.

Magalhaes ET AL 29

8 CONCLUSION

This paper presented a technique to inspect the internal state of programs. In terms of implementation, this technique borrows
most of its ideas from previous research concerning the design and implementation of garbage collectors for C and C++.
However, we have redirected these ideas: instead of doing memory management, we give users a human-observable “peephole”
into the program state. This peephole can be used in various ways, as Section 5 demonstrates; furthermore, it is adjustable, going
from slow/precise to fast/cursory modes.
Known Limitations
This work, which exists today as theWHIRO framework, has limitations.We have discussed some of these limitations throughout
this paper. We revisit them in this section as a way to inspire future developments of this project:
Ordering: Accesses to the heap table H are not synchronized; thus, in the face of concurrency, Property 4 is not guaranteed.

Lack of ordering complicates matching states of different variations of the same parallel program, as we did in Section 6.6.
Optimizations: WHIRO relies on debugging data to report to users the state of program variables. If some optimization removes

this meta-information (or removes the program point altogether), then it will not have any state to report.
Interference: WHIRO modifies the memory layout of a program. Thus, code transformations that rely on the relative position

between program data must run after WHIRO. An example would be transformations that ensure control-flow integrity by
checking that the return address of a function has not been modified20.

Usability: as mentioned in Section 5.1, WHIRO provides three built in modules to insert inspection points in programs:
MAIN-RET, ANY-RET and ANY-STORE. Currently, users do not have a way to specify particular return points, having to
rely on those modules, which are selected through command-line flags.

Performance: as discussed in Section 6.2, at its maximum granularity, WHIRO might slow down a program to the point that
running this program becomes only practical for debugging purposes.

These limitations are not fundamental to the goal of inspecting program state; however, they are inherent to our implementation
decisions, and represent tradeoffs between practicality and effectiveness. For instance, to be language-agnostic, WHIRO modifies
the intermediate representation of a program; yet, to be human-friendly,WHIRO outputs information with regards to the variables
in the high-level representation of the program. Thus, optimizations that eliminate static inspection points will prevent it from
generating reports concerning the SIP just deleted. Similarly, WHIRO is not an interpreter: its interventions are carried out via
machine-code inserted in the target program. Therefore, WHIRO modifies the memory layout of programs. On the one hand, it is
intrusive; on the other, its deployment requires only support from the compiler—the operating system and the target architecture
are left untouched.
Future Work
The current limitations of WHIRO draw attention to potential extensions of it, the development of which might yield exciting
future work. Delivering ordering guarantees in face of concurrency is an interesting challenge. Simply synchronizing access to
thememorymonitormight be a solution that is too restrictive to the purposes ofWHIRO; first, due to the overhead of synchronized
memory accesses; second, because this extra synchronization might force ordered execution of statements that were not subject
to such constraints before. Thus, care must be taken when inspecting the state of concurrent code, lest the inspector changes
the semantics of the subject program. In regards to usability, it is our view that WHIRO should be eventually integrated with a
domain-specific language (DSL) that lets users specify the program points where SIPs must be inserted. This approach would
decouple the specification of inspection points from the code that inserts them into the program. We believe that the design and
implementation of such a DSL would yield a useful and interesting extension of the ideas discussed in this paper.
Software:
WHIRO is publicly available at https://github.com/JWesleySM/Whiro under the GPL-3.0 License. A short video-tutorial
explaining how to use it to observe the internal state of programs is available at https://youtu.be/E8xj-KSqe4M.

https://github.com/JWesleySM/Whiro
https://youtu.be/E8xj-KSqe4M

30 Magalhaes ET AL

Acknowledgement
We thank Breno Guimarães, Angélica Moreira and Luigi Soares for proofreading a draft of this paper. We thank Luciano
Almeida for contributions made in WHIRO’s code base. Fernando Pereira has been supported by CNPq (Grant 406377/2018-9);
FAPEMIG (Grant PPM-00333-18) and CAPES (Edital CAPES PRINT). Wesley Magalhães was the recipient of a scholarship
from the Brazilian Ministry of Education via CAPES. This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-826460). This
material is based upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Program (ASCR SC-21).

References

1. Brusilovsky P. Program Visualization as a Debugging Tool for Novices. In: Association for Computing Machinery. ; 1993;
New York, NY, USA: 29–30

2. Zorn B. Comparing Mark-and Sweep and Stop-and-Copy Garbage Collection. In: Association for Computing Machinery. ;
1990; New York, NY, USA: 87–98

3. Wilson PR. Uniprocessor Garbage Collection Techniques. In: Springer-Verlag. ; 1992; Berlin, Heidelberg: 1–42.
4. Mastrangelo L, Ponzanelli L, Mocci A, Lanza M, Hauswirth M, Nystrom N. Use at Your Own Risk: The Java Unsafe API

in the Wild. In: Association for Computing Machinery. ; 2015; New York, NY, USA: 695–710
5. BoehmHJ,WeiserM. Garbage collection in an uncooperative environment. Software: Practice and Experience 1988; 18(9):

807–820.
6. Boehm HJ. Space efficient conservative garbage collection. ACM SIGPLAN Notices 1993; 28(6): 197–206.
7. Henderson F. Accurate garbage collection in an uncooperative environment. ACM SIGPLAN notices 2003; 38(2): 256–262.
8. Rafkind J, Wick A, Regehr J, Flatt M. Precise garbage collection for C. In: ACM. ; 2009; New York, NY, USA: 39–48.
9. Lee D,Won Y, Park Y, Lee S. Two-Tier Garbage Collection for Persistent Object. In: Association for ComputingMachinery.

; 2020; New York, NY, USA: 1246–1255
10. Banerjee S, Devecsery D, Chen PM, Narayanasamy S. Sound garbage collection for C using pointer provenance.

Proceedings of the ACM on Programming Languages 2020; 4(OOPSLA): 1–28.
11. Lattner C, Adve V. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In: IEEE. ; 2004;

Washington, DC, USA: 75–.
12. Nethercote N, Seward J. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation. In: Association for

Computing Machinery. ; 2007; New York, NY, USA: 89–100
13. Stallman RM, Pesch R, Shebs S. Debugging with GDB: The GNU Source-Level Debugger. USA: GNU Press . 2002.
14. Ingalls D, Miranda E, Béra C, Boix EG. Two decades of live coding and debugging of virtual machines through simulation.

Softw. Pract. Exp. 2020; 50(9): 1629–1650. doi: 10.1002/spe.2841
15. Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T, Brown RB. MiBench: A Free, Commercially Representative

Embedded Benchmark Suite. In: IEEE. ; 2001; Washington, DC, USA: 3–14
16. Aho AV, LamMS, Sethi R, Ullman JD. Compilers: Principles, Techniques, and Tools (2nd Edition). USA: Addison-Wesley

Longman Publishing Co., Inc. . 2006.
17. Hathhorn C, Ellison C, Roşu G. Defining the Undefinedness of C. In: Association for Computing Machinery. ; 2015; New

York, NY, USA: 336–345

http://dx.doi.org/10.1002/spe.2841

Magalhaes ET AL 31

18. Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK. An Efficient Method of Computing Static Single Assignment
Form. In: ACM. ; 1989; New York, NY, USA: 25–35

19. Bonwick J. The Slab Allocator: An Object-Caching Kernel Memory Allocator. In: USTC’94. USENIX Association. ; 1994;
USA: 6.

20. Cowan C, Pu C, Maier D, et al. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks. In:
SSYM’98. USENIX Association. ; 1998; USA: 5.

21. Zakowski Y, Cachera D, Demange D, et al. Verifying a Concurrent Garbage Collector with a Rely-Guarantee Methodology.
J. Autom. Reason. 2019; 63(2): 489–515. doi: 10.1007/s10817-018-9489-x

22. Schildt H. The Annotated ANSI C Standard American National Standard for Programming Languages—C: ANSI/ISO 9899-
1990. USA: McGraw-Hill, Inc. . 1990.

23. Lopes NP, Lee J, Hur CK, Liu Z, Regehr J. Alive2: Bounded Translation Validation for LLVM: 65–79; New York, NY, USA:
Association for Computing Machinery . 2021.

24. Sagiv M, Reps T, Wilhelm R. Solving Shape-Analysis Problems in Languages with Destructive Updating. ACM Trans.
Program. Lang. Syst. 1998; 20(1): 1–50. doi: 10.1145/271510.271517

25. Thakur M, Nandivada VK. Compare Less, Defer More: Scaling Value-Contexts Based Whole-Program Heap Analyses. In:
Association for Computing Machinery. ; 2019; New York, NY, USA: 135–146

26. Thakur M, Nandivada VK. Mix Your Contexts Well: Opportunities Unleashed by Recent Advances in Scaling Context-
Sensitivity. In: Association for Computing Machinery. ; 2020; New York, NY, USA: 27–38

27. Dahiya M, Bansal S. Black-Box Equivalence Checking Across Compiler Optimizations. In: Chang BE., ed. Programming
Languages and Systems - 15th Asian Symposium, APLAS 2017, Suzhou, China, November 27-29, 2017, Proceedings. 10695
of Lecture Notes in Computer Science. Springer. ; 2017; Berlin, Heidelberg: 127–147

28. Pnueli A, Siegel M, Singerman E. Translation Validation. In: Springer-Verlag. ; 1998; Berlin, Heidelberg: 151–166.
29. Necula GC. Translation Validation for an Optimizing Compiler. In: Association for Computing Machinery. ; 2000; New

York, NY, USA: 83–94
30. Armengol-Estapé J, O’Boyle MFP. Learning C to x86 Translation: An Experiment in Neural Compilation. CoRR 2021;

abs/2108.07639.
31. Cummins C, Petoumenos P, Wang Z, Leather H. Synthesizing Benchmarks for Predictive Modeling. In: IEEE. ; 2017;

Piscataway, NJ, USA: 86–99.
32. Cummins C, Petoumenos P, Murray A, Leather H. Compiler Fuzzing Through Deep Learning. In: ACM. ; 2018; New York,

NY, USA: 95–105
33. Silva dAF, Kind BC, Souza Magalhães dJW, Rocha JN, Guimarães BCF, Pereira FMQ. AnghaBench: A Suite with One

Million Compilable C Benchmarks for Code-Size Reduction. In: IEEE Computer Society. ; 2021; USA: 378–390
34. Armengol-Estape J, Woodruff J, Brauckmann A, Souza Magalhaes dJW, O’Boyle MFP. ExeBench: An ML-scale dataset

of executable C functions. In: Association for Computing Machinery. ; 2022; New York, NY, USA: 1–10.
35. Aftandilian EE, Kelley S, Gramazio C, Ricci N, Su SL, Guyer SZ. Heapviz: Interactive Heap Visualization for Program

Understanding and Debugging. In: Association for Computing Machinery. ; 2010; New York, NY, USA: 53–62
36. Grech N, Fourtounis G, Francalanza A, Smaragdakis Y. Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots.

Proc. ACM Program. Lang. 2017; 1(OOPSLA). doi: 10.1145/3133892
37. P. JK, Jayaraman S, Jayaraman B, Sethumadhavan M. Finite-state model extraction and visualization from Java program

execution. Softw. Pract. Exp. 2021; 51(2): 409–437. doi: 10.1002/spe.2910

http://dx.doi.org/10.1007/s10817-018-9489-x
http://dx.doi.org/10.1145/271510.271517
http://dx.doi.org/10.1145/3133892
http://dx.doi.org/10.1002/spe.2910

32 Magalhaes ET AL

38. Brade K, Guzdial M, Steckel M, Soloway E. Whorf: A Visualization Tool for Software Maintenance. In: IEEE Computer
Society. ; 1992: 148–154

39. Smith C, Strauss J, Maher P. Data Structure Visualization: The Design and Implementation of an Animation Tool. In:
Association for Computing Machinery. ; 2010; New York, NY, USA

40. Stasko J. Animating Algorithms with XTANGO. SIGACT News 1992; 23(2): 67–71. doi: 10.1145/130956.130959
41. Leroy X. Formal Verification of a Realistic Compiler. Commun. ACM 2009; 52(7): 107–115. doi:

10.1145/1538788.1538814
42. Yang X, Chen Y, Eide E, Regehr J. Finding and Understanding Bugs in C Compilers. In: ACM. ; 2011; New York, NY,

USA: 283–294
43. Le V, Afshari M, Su Z. Compiler Validation via Equivalence modulo Inputs. In: Association for Computing Machinery. ;

2014; New York, NY, USA: 216–226
44. Sun C, Le V, Su Z. Finding Compiler Bugs via Live Code Mutation. In: Association for Computing Machinery. ; 2016;

New York, NY, USA: 849–863
45. Gupta S, RoseA, Bansal S. Counterexample-GuidedCorrelationAlgorithm for TranslationValidation.Proc. ACMProgram.

Lang. 2020; 4(OOPSLA). doi: 10.1145/3428289
46. Tristan JB, Govereau P, Morrisett G. Evaluating value-graph translation validation for LLVM. In: ACM. ; 2011; New York,

NY, USA: 295–305
47. Richards G, Gal A, Eich B, Vitek J. Automated Construction of JavaScript Benchmarks. SIGPLAN Not. 2011; 46(10):

677–694.
48. Yang L, Gurumain S, Fahmy SA, Chen D, RupnowK. JIT trace-based verification for high-level synthesis. In: IEEE. ; 2015:

228-231.
49. Bao T, Burket J, Woo M, Turner R, Brumley D. BYTEWEIGHT: Learning to Recognize Functions in Binary Code. In:

SEC’14. USENIX Association. ; 2014; USA: 845–860.
50. Harris LC, Miller BP. Practical Analysis of Stripped Binary Code. SIGARCH Comput. Archit. News 2005; 33(5): 63–68.

doi: 10.1145/1127577.1127590
51. Lee J, Avgerinos T, Brumley D. TIE: Principled Reverse Engineering of Types in Binary Programs. In: The Internet Society.

; 2011.
52. Meng X, Miller BP. Binary Code is Not Easy. In: Association for Computing Machinery. ; 2016; New York, NY, USA:

24–35
53. Collie B, O’Boyle MFP. Program Lifting using Gray-Box Behavior. In: Lee J, Cohen A., eds. PACTIEEE. ; 2021: 60–74
54. Rimsa A, Amaral JN, Pereira FMQ. Practical dynamic reconstruction of control flow graphs. Softw. Pract. Exp. 2021; 51(2):

353–384. doi: 10.1002/spe.2907
55. Agrawal H. Towards Automatic Debugging of Computer Programs. PhD thesis. Purdue University, USA; 1992. UMI Order

No. GAX92-01293.
56. Agrawal H, Demillo RA, Spafford EH. Debugging with Dynamic Slicing and Backtracking. Softw. Pract. Exper. 1993;

23(6): 589–616. doi: 10.1002/spe.4380230603

http://dx.doi.org/10.1145/130956.130959
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/3428289
http://dx.doi.org/10.1145/1127577.1127590
http://dx.doi.org/10.1002/spe.2907
http://dx.doi.org/10.1002/spe.4380230603

Magalhaes ET AL 33

AUTHOR BIOGRAPHY

José Wesley Magalhães is a Ph.D. Candidate in Computer Science at The University of Edinburgh (UoE).
Currently, Wesley is working as a Research Postgraduate in the Institute for Computing and Systems Archi-
tecture (ICSA) under the supervision of Professor Michael O’Boyle. He also holds a Master’s Degree and a
Bachelor’s Degree in Computer Science. His research interests include Compilers, Programming Languages
Design, Static and Dynamic Analyses, and Benchmark Validation.
Chunhua “Leo” Liao is a senior computer scientist in the Center for Applied Scientific Computing (CASC)
at Lawrence Livermore National Laboratory. His research focus has been on software techniques to improve
the performance and correctness of parallel programs. His research interests encompass parallel languages,
especially OpenMP, optimizing compilers, runtime systems, and programming tools. Dr. Liao received his
Ph.D. degree in Computer Science from University of Houston in Aug. 2007. He also holds M.E. and B.E.
degrees in Computer Science from Sichuan University in China.
FernandoM. Q. Pereira, got his Ph.D. at the University of California, Los Angeles, in 2008. Since November
of 2009 he is an associate professor at the Department of Computer Science of the Federal University of Minas
Gerais. He does research in compilers, and is interested in the design and implementation of static analyses and
code optimizations. At UFMG he teaches programming languages and compilation technology. Fernando’s
research is supported by public research agencies, such as INRIA, FAPEMIG, CAPES and CNPq, and by
private enterprises, such as Intel, LGE, Google and Maxtrack.

How to cite this article: J. W. Magalhaes, L. Chunhua, and F. Pereira (2022), Automatic Inspection of Program State in an
Uncooperative Environment, SPE., 2022;00:0–0.

	Automatic Inspection of Program State in an Uncooperative Environment
	Abstract
	Introduction
	Core Definitions
	Program States

	Tracking State
	Static Components of the Memory Monitor
	Dynamic Components of the Memory Monitor
	Information Retrieval
	Properties of the Memory Monitor

	Implementation Decisions
	Dealing with pointer arithmetics
	Reading one element past the end of an array
	Dealing with Union Types
	Shadowing Stack Variables
	Inspecting State of Optimized Code

	Applications of Inspection Points
	Customizations
	Debugging Aid
	Adding Verification Outputs to Benchmarks
	Data Visualization

	Evaluation
	RQ1: Compilation Overhead
	RQ2: Running Time Overhead
	RQ3: Memory Overhead
	RQ4: Code-Size Overhead
	RQ5: Number of Static Inspection Points
	RQ6: Potential as Debugging Aid
	Summary of Results

	Related Work
	Compiler Correctness
	Reverse Engineering of Low-Level Code
	Garbage Collection in Uncooperative Environments

	Conclusion
	References
	Author Biography

