
ANGHABENCH: a Suite with One Million
Compilable C Benchmarks for Code-Size Reduction

Anderson Faustino da Silva
Department of Informatics

UEM, Brazil
anderson@din.uem.br

Bruno Conde Kind
Department of Computer Science

UFMG, Brazil
condekind@dcc.ufmg.br

José Wesley de Souza Magalhães
Department of Computer Science

UFMG, Brazil
josewesleysouza@dcc.ufmg.br

Jerônimo Nunes Rocha
Department of Computer Science

UFMG, Brazil
jeronimonunes@dcc.ufmg.br

Breno Campos Ferreira Guimarães
Department of Computer Science

UFMG, Brazil
brenosfg@dcc.ufmg.br

Fernando Magno Quintão Pereira
Department of Computer Science

UFMG, Brazil
fernando@dcc.ufmg.br

Abstract—A predictive compiler uses properties of a program
to decide how to optimize it. The compiler is trained on a
collection of programs to derive a model which determines its
actions in face of unknown codes. One of the challenges of
predictive compilation is how to find good training sets. Regard-
less of the programming language, the availability of human-
made benchmarks is limited. Moreover, current synthesizers
produce code that is very different from actual programs, and
mining compilable code from open repositories is difficult, due
to program dependencies. In this paper, we use a combination
of web crawling and type inference to overcome these problems
for the C programming language. We use a type reconstructor
based on Hindley-Milner’s algorithm to produce ANGHABENCH,
a virtually unlimited collection of real-world compilable C pro-
grams. Although ANGHABENCH programs are not executable,
they can be transformed into object files by any C compliant
compiler. Therefore, they can be used to train compilers for
code size reduction. We have used thousands of ANGHABENCH
programs to train YACOS, a predictive compiler based on LLVM.
The version of YACOS autotuned with ANGHABENCH generates
binaries for the LLVM test suite over 10% smaller than clang
-Oz. It compresses code impervious even to the state-of-the-art
Function Sequence Alignment technique published in 2019, as it
does not require large binaries to work well.

Index Terms—Benchmark, Repository, Synthesis, Training

I. INTRODUCTION

The growing popularity of stochastic classification tech-
niques is contributing to making compiler autotuning an
effective approach to the generation of efficient programs [1],
[2], [3]. Autotuning is implemented as follows. A compiler
is trained on a collection of programs, and uses knowledge
acquired during training to optimize unseen codes. Samples
from the known collection of programs are compiled in dif-
ferent ways, and the best results, given some objective function
such as running time or size, are recorded. The compiler
uses this model to decide which optimizations to apply on
an unknown program Pu. Autotuning has been shown to be
effective along different dimensions of code efficiency, such
as running time [4], [5], [6], [7], [8], energy consumption [9],
[10], code size [11], [12], [13], hardware usage [14], [15], and
the size-speed relation [16], [17], for instance.

a) The Problem Posed by the Lack of Benchmarks:
A common shortcoming in this field, extensively discussed
by Cummins et al. [14], is the small size of typical training
sets. Cummins et al. have analyzed 25 research papers pub-
lished between 2013 and 2016, from four conferences: CGO,
HiPC, PACT, and PPoPP. They observe that “the average
number of benchmarks used in each paper [is] 17”. This
result, although at first surprising, should not be unexpected.
Typical benchmarks contain a small number of programs:
SPEC CINT2006 [18] contains 12, SPEC CFP2006 [18]
contains 17, Parsec [19] contains 13, Rodinia [20] contains 23,
Polybench [21] contains 30, cBench [22] contains 30, and NPB
v.1 [23] contains 8. The problem with these small numbers is,
in the words of Cummins et al., that “heuristics learned on one
benchmark suite fail to generalize across other suites”. Wang
and O’Boyle subsume well the essence of the problem: ”The
most immediate problem continues to be gathering enough suf-
ficient high quality training data. Although there are numerous
benchmark sites publicly available, the number of programs
available is relatively sparse compared to the number that a
typical compiler will encounter in its lifetime.” [3]

To circumvent the obstacle posed by a perceived lack of
benchmarks, compiler researchers resort to program genera-
tion. With such purpose, automatically constructed programs
have been used to tune compiler heuristics in specific sce-
narios [24], [10], [25], [26], [27]. However, these programs
cannot be easily employed in general purpose compilers: they
consist of micro-kernels that exercise particular aspects of the
target hardware or of the target programming language. As an
example, Sreelatha et al. [10] generate code snippets to find
optimum constants for their code generation approach. Each
program performs one action several times, be it to access
memory, to synchronize threads, to force branch mispredic-
tions, etc. Such behavior, although befitting Sreelatha et al.’s
needs, is unlikely to occur in real-world programs.

b) Our Contributions: We bring forward a new technique
to generate compilable benchmarks for C. As we explain in
Section III, we mine C code from open-source repositories. Al-

though an obvious solution to the synthesis of benchmarks, this
approach is not common due to one fundamental shortcoming:
it is difficult to compile code downloaded from repositories
automatically, due to program dependencies. In the words of
Cummins et al. [14]: “preparing each of the thousands of open
source projects to be directly applicable for learning compiler
heuristics would be an insurmountable task.” In this paper, we
show how to compile these codes without human intervention.
Key to the success of this endeavor is type reconstruction. We
use PsycheC, a type inference engine for C [28], to fill up
all the missing dependencies of code mined from the internet.
This combination of code crawler and type reconstruction
yields a collection of compilable programs that is practically
unbounded.

Summary of Results. We call ANGHABENCH the collec-
tion of C benchmarks that we synthesize. Every benchmark
is compilable, albeit non-executable. ANGHABENCH can be
parsed by any C analyzer, can be converted into intermediate
representations such as LLVM IR and gcc Gimple, and can be
translated into object files. ANGHABENCH supports compiler
tuning for code size reduction, and lets researchers study
properties of real-world programs via static code analyses.
Such possibilities are summarized in the following list of
contributions:

• Reconstructor: Section III-A describes the infrastructure
that we use to obtain compilable C programs from public
repositories. This combination of web crawler and type
inference engine is able to produce one million compil-
able C functions in about one week, including the time
to download files and reconstruct types.

• Distribution: We provide a public collection of over
one million compilable C files, organized as single-
function and multi-function benchmarks. As we explain
in Section III-B, this collection is browsable—search
being guided by a vector of features that we extract from
the LLVM representation [29] of each program.

• Applications: Section IV-B shows that ANGHABENCH
predicts well the behavior of compiler optimizations. In
Section IV-D, we use ANGHABENCH to train YACOS,
a framework implemented by Filho et al. [6], [30] to
find good optimization sequences for LLVM. Consider-
ing code size as the objective functions, we show that
ANGHABENCH yields a training set 45.33% and 36.77%
more effective than programs generated by CSMITH [31]
and LDRGEN [32].

• Optimization: We have used ANGHABENCH to produce
a code reduction tool, ANGHAZ, that improves clang-Oz
by 11.1% on average. To compile an unseen program Pu,
ANGHAZ searches a database of optimized functions for
the program Pk the closest to Pu, given a well-known
distance metric [5]. As discussed in Section IV-E, by
applying onto Pu optimizations known to be effective on
Pk, ANGHAZ can reduce codes impervious to even Rocha
et al.’s state-of-the-art approach published in CGO19’s
distinguished paper [33].

c) Why compilation matters: We call “compilable” a file
known in the C specification as a translation unit [34, Sec-
5.1.1.1]. From a translation unit a C compiler can produce
an object file. There are analyses that can be performed on
the source code of programs, without the need to produce
compilable code [35], [36], [37]. However, all the analyses and
applications that we present in Section IV require compilable
code, because these techniques either run on LLVM bytecodes
or on machine code. In Section IV-F we show that type
inference is essential to give us a large quantity of compilable
benchmarks. Without type inference, we cannot go from the
program’s abstract syntax tree to object code, due to missing
dependencies.

d) The benefits of a large code base: The reader could
think that it is simple to analyze any partial C function, even
if not compilable, as long as it is syntactically valid. This
statement is not true. The C grammar is not context free;
hence, most parsers, including clang’s and gcc’s, require all
the dependencies in place, otherwise, statements like T*c
become ambiguous: is T a type, or the first operand of a
multiplication? Other ambiguities exist [28]. Having this large
and unambiguous code base opens up many opportunities to
understand real-world C programs. We have performed some
analysis to this end, which, for the sake of space, we discuss in
an extended technical report that accompanies this paper [38].

II. OVERVIEW

A. Predictive Compilation

As mentioned in Section I, a predictive compiler relies on
properties of known programs to approximate properties of
unknown programs. The collection formed by all the known
programs is called the Training Set. Predictions, in this context,
consist in matching static program properties, also called
features, with compilation actions1. The concept of static
program property has been defined in previous work; however,
because this is a central notion to this paper, we recall its
definition, using the notation proposed by Pereira et al. [39]:

Definition 1 (Static Program Feature). Given a program P , a
static program feature f(P) is any characteristic of P , with
the following attributes:

• Static: f(P) depends only on the syntax of P ;
• Consistent: if f(P) = x and f(P) = x′, then x = x′;
• Available: f(P) can be computed in polynomial time.

An ordered sequence of program features determines a
feature vector. The set of every possible feature vector gives us
a feature space. Such space can be explored in many different
ways. For instance, because it abides by Euclidean Laws, it is
sound to define distance between vectors. Example 1 illustrates
these concepts.

1Previous work on predictive compilation, such as Zanella et al’s [30], also
talk about dynamic program features. These are properties observed during
the execution of programs. In this paper, we focus entirely on static program
properties, as the benchmarks that we produce are not meant to run.

Example 1. Figure 1 shows a three-dimentional feature space.
The three features that form it are Number of Instructions,
Number of Stores and Loop Depth, i.e., the depth level of
the innermost natural loop in the program.

 0 20 40 60 80 100 120 5
0

10
0

15
0

20
0

25
0

0

1

2

3

4

(93, 4, 234)

Number of stores

Nu
m

be
r o

f i
ns

tru
ct

io
ns

Mos
t n

es
ted

 lo
op

0 1 0 1 1

(88, 2, 191)

0 1 1 0 1

ta
il
ca
ll
el
im

lo
op
-s
im
pl
if
y

sc
al
ar
iz
er

li
cm

lo
op
-r
ot
at
e

Feature vector
Optimization vector

Fig. 1. Training a predictive compiler.

The training phase of a predictive compiler consists in
a search, not necessarily exhaustive, for the most adequate
compilation action for each program in the training set. The
notion of “most adequate action” depends on two factors: (i)
the objective function that guides the search; and (ii) the rep-
resentation of the action. Typical objective functions include
runtime, size and energy consumption. Common representa-
tions include tuples and lists of optimizations. In the former
case, the order of application of an optimization is fixed—
what varies is the occurrence or not of the optimization [6],
[40]. In the latter, any permutation of a known universe of
optimizations is acceptable [41], [42], [43].

Example 2. The property space seen in Figure 1 contains
twelve programs, each one represented as a dot. The figure
shows the feature vectors of two programs. The best tuple of
optimizations, from a universe of five candidates, for each one
of these two programs is also shown. A zero means that the
optimization is inactive; a one means that it should be applied
onto that program. Such tuples can be found using different
heuristics, including exhaustive search. In this example, we
assume that the objective function is size; thus, a tuple t1 is
better than a tuple t2 when the optimizations in t1 reduce code
size more than the optimizations in t2.

Once a compiler is trained, it can be used to optimize
unknown programs. Optimizations, in this case, are based on
approximations: the behavior observed in the training set is
used to approximate the behavior of the unseen code. There
are many ways to implement these approximations: neural
networks, supporting vector machines, decision trees, etc.
Example 3 uses one of such techniques: classification based
on K-nearest neighbors [44], to perform predictions.

 0 20 40 60 80 100 120 5
0

10
0

15
0

20
0

25
0

0

1

2

3

4

Number of stores

N
um

be
r o

f i
ns

tru
ct

io
ns

Mos
t n

es
ted

 lo
op

Unknown program
(25, 1, 75)

(27, 0, 51) 11001(18, 0, 55) 11001

(3, 1, 63) 10001

(48, 1, 88) 11011 11001
Prediction

Fig. 2. Performing predictions.

Example 3. Figure 2 shows how the K-Nearest Neigh-
bors algorithm can predict the best optimization tuple for
a program. Given an unknown program with feature vector
(stores = 25, innermost = 1, instructions = 75), we find
the four closest programs to this vector. The predictor activates
the ith optimization if said optimization is active among the
closest neighbors, and turns it off otherwise.

B. The Need for Benchmarks
If the training collection is small, then large chunks of the

feature space will remain uncovered by the known codes.
Compilers can still perform predictions; however, the infor-
mation available during training might not approximate the
behavior of unseen programs. To circumvent this problem,
researchers often use synthetic benchmark suites. In this
section, we analyze some of these approaches.

a) DeepSmith: One of the most successful benchmark
generators in use today is DEEPSMITH [45], an evolution
of Cummins et al.’s CLGEN [14]. DEEPSMITH has been
able to produce realistic OpenCL programs. It is meant to
be programming language agnostic; however, our attempts to
use it towards generating C, instead of OpenCL, programs met
with no success. Below, we narrate three of our experiences.
In every case, we use compilable C programs drawn from a
collection of half-a-million samples mined from open-source
repositories as the initial training corpus:
• Training set: 30,000 randomly chosen C files. 107,264

candidate strings generated in 15 hours using a seed
function signature with one argument. Results: Nine
programs could be compiled. The largest LLVM bytecode
had five instructions (Clang -O0).

• Training set: 30,000 randomly chosen C files. Genera-
tion: 131,760 candidate strings in 30 hours using a seed

signature with four arguments. Results: 1,178 programs
could be successfully compiled. The largest program had
six lines of code, and 36 LLVM instructions.

• Training set: the 10,000 largest C files in the available
collection. Generation: 54,912 candidate strings gener-
ated in 10 hours using a seed function signature with
four arguments. Results: Seventeen programs could be
successfully compiled. The largest program had five lines
of code, and 16 LLVM instructions.
b) Compiler Fuzzers: A compiler fuzzer produces ran-

dom programs to uncover bugs in compilers. The most suc-
cessful tool of this sort is CSMITH [31]. Programs generated
by CSMITH have revealed hundreds of bugs in the LLVM
infrastructure, and dozens in gcc’s. LDRGEN, another tool of
similar purposes, has also been effectively employed to find
bugs in different compilers. Although tremendously successful
as bug-finding resources, fuzzers are not meant to be used
to generate training data for predictive compilers. Programs
generated by fuzzers like CSMITH and LDRGEN tend to differ
from real-world codes. Thus, properties inferred from them
may not generalize to programs written by people. The next
example supports this statement with empirical data.

Example 4. Figure 3 shows the relation between stores and
loads in the 275 programs in the LLVM test suite. For
each store, we find 3.35 load instructions. This analysis was
performed in LLVM bytecodes compiled with -O0, but opti-
mized with mem2reg. This optimization, mem2reg, has been
used in this experiment to remove memory access operations
related to stack-allocated variables. Without this optimization,
binaries would contain too many loads and stores without
a counterpart in the source code. Analyzing 10K programs
generated by CSMITH, we find the inverse behavior: 0.47
loads per store. 10K programs produced by LDRGEN fare no
better: they contain only one store instruction. The programs
synthesized by DEEPSMITH (1,204 samples) approximate the
ratio found in the actual benchmarks: for each store, we find
2.97 load instructions. Nevertheless, they are too small: the
largest program contains only two store instructions.

III. THE ANGHABENCH COLLECTION

A. The Program Reconstruction Framework

We developed a completely automated process for gener-
ating compilable programs from open source projects. This
infrastructure has three major components: (i) Repository
Crawler; (ii) Function Extractor; and (iii) Type Inference
Engine. Each of these steps is described in the rest of this
section.

a) The Repository Crawler: The first stage in our frame-
work consists in gathering the source-code from which we
shall build benchmarks. Programs are mined from GitHub,
via a web crawler. We filter out projects tagged as using the C
programming language, then sort them by popularity (we use
GitHub stars as a metric of popularity). The crawler traverses
a prefix of this sorted list, whose length is determined by the

user, cloning each of the repositories in order. The codebase
of each repository is cleaned to remove files which are not
C source or header files. This corpus of C programs is then
provided as input to the Function Extractor.

b) The Function Extractor: The function extractor sep-
arates mined files into a collection of would-be programs,
consisting of one C function per file. The extractor is a clang
plugin, which runs after Clang’s Abstract Syntax Tree building
step. It traverses the program’s AST, looking for function
declarations. If a declaration is found and has a matching
definition, we outline its implementation to a separate file. The
plugin can run in two modes: it can either create a file for each
function found, or one single file that aggregates all function
definitions found within that input source file. Clang builds an
AST for a program even if errors occur during compilation.
However, unless dependencies can be solved, it cannot move
from this point towards a final object file. Example 5 illustrates
some issues that prevent compilation.

Example 5. Figure 4 shows a function extracted from the
source code of the Tox peer-to-peer messaging application.
This function (without the declarations in the grey box) is not
compilable, namely because it calls another function whose
declaration is unavailable in line 7, and contains references to
an unknown type BS LIST in lines 6, 7 and 12.

c) The Type Inference Engine: Once we have a large
number of candidate programs, the next challenge is to make
them compilable. To solve issues that prevent compilation,
such as those seen in Example 5, we run each program through
the PsycheC type inference engine [28]. PsycheC will fill
the missing pieces within the candidate program, generating a
version of its code that compiles.

Example 6. The grey box in Figure 4 shows the result of
running the function bs_list_find through PsycheC. The
resulting program has a function declaration for the missing
function find, as well as a valid definition for the missing
type BS LIST. This is all the absent information that prevented
compilation of the original code. Therefore, any C compiler
can successfully compile this new version without errors.

On the Preservation of Information. PsycheC does not
change the control flow graph of programs. However, changes
may happen in the types of variables: fields present in structs
and unions in the original program might be omitted in the
reconstructed code, or might be declared with different types.
Omissions happen if these fields are not used. Thus, the
intermediate representations of the original and reconstructed
programs are identical, except for the types of the variables.

B. The Code Distribution Framework

To distribute the programs assembled using the techniques
seen in Section III-A, we have created a public website.
Different benchmark suites can be downloaded from it. All
these collections include only compilable codes. Compilation
has been certified using gcc 7.5, LLVM v.6, v.8 and v10.
Currently, we distribute the following suites:

0 14K

15K

0
0 12K

12K

0

400

0
0 400 0 20

5

0
Number of Loads

N
um

be
r o

f S
to

re
s

N
um

be
r o

f S
to

re
s

N
um

be
r o

f S
to

re
s

N
um

be
r o

f S
to

re
s

Number of Loads Number of Loads Number of Loads

LLVM Test Suite CSmith LDRGen
DeepSmithslope = 0.298 slope = -0.470 slope = 0.000

slope = 0.337

Fig. 3. A comparison between the number of stores and loads found in different benchmark collections. To ease visual comparison, each plot shows the line
(in pink) produced for the programs in the LLVM test suite and the main diagonal (in grey), i.e., X = Y .

int bs_list_find
 (const BS_LIST *list, const uint8_t *data) {
 int r = find(list, data);
 //return only -1 and positive values
 if (r < 0) {
 return -1;
 }
 return list->ids[r];
}

6
7

8
9

10
11
12
13

1
2
3
4

typedef int uint8_t;
struct TYPE_4__ { int* ids; };
typedef struct TYPE_4__ BS_LIST ;
int find (BS_LIST const*, int const*);

Fig. 4. The code outside the grey area is an example of non-compilable
candidate program extracted from the toxcore repository. The code in the
grey area was introduced by PsycheC, to ensure compilation.

• The ANGHABENCH collection:
– a set with 1M files containing single functions;
– a set with 530K files containing single functions;
– the 10K largest files from the above set;
– 15K files containing multiple functions.

• The LLVM test suite: 275 programs.
• The 10K largest programs among 530K programs gener-

ated with LDRGEN.
• The 10K largest programs among 530K programs gener-

ated with CSMITH.
• All the 1,204 programs that we have produced with

DEEPSMITH (see Section II).
Figure 5 reports data about the size of the programs in the

different collections. Program size is measured as the number
of instructions of these programs in the LLVM intermediate
representation. When converting programs to LLVM, we use
the mem2reg pass, to move to virtual registers all the program
variables that, otherwise, would be allocated on the stack.

a) A Protocol to Build Benchmarks: The largest
ANGHABENCH collection contains 1,033,890 programs. For
faster experiments, we also provide smaller suites. To build
collections of N benchmarks, we follow the procedure below:

1) Let R be a list with the most popular git repositories,
in number of stars, with a majority of files in C,
in descending order, and let C be the collection of
benchmarks.

2) While C has less than N files, we:
a) Remove r, the current most popular repository

from R;
b) Add to C every function from r (see Section III-A).

b) The Code Search Engine: The public distribution
contains a code search engine, which lets users retrieve the
K closest program to a given code. Proximity is measured

Collection Quantity Granularity Mean SD Median

1M Functions 61.60 81.41 36

530K Functions 63.24 97.32 36

10K Functions 534.07 336.38 433

15K Whole files 266.64 419.79 119

530K Functions 5,844.67 5,876.67 3,933

10K Functions 20,190.90 3,649.04 19,161

530K Functions 1,950.54 1,216.82 2,007

10K Functions 4,753.50 322.65 4,668

DeepSmith 1K Functions 13.00 2.98 12

LLVM+SPEC06 288 Whole files 6,737.35 41,262.08 584

AnghaBench

CSmith

LDRGen

Fig. 5. Instructions per benchmarks in the collections that we distribute. SD
is Standard Deviation.

as the Euclidean Distance computed on the feature vectors
introduced in Section II-A. We use LLVM to mine features
from the intermediate representation of programs. Today, users
can assemble vectors using features taken from a collection of
239 candidate program characteristics. We also provide three
predefined feature vectors:
• LLVMSTS: 59 features produced by the LLVM’s
--stats flag applied on clang -O0.

• NUMERICAL FEATURES: 43 features taken from Filho et
al. [6]. They project Namolaru et al. [5] features onto the
LLVM IR.

• DEFAULT: A seven-features vector for fast searches,
formed by (number of) instructions, stores, loads, basic
blocks, Control Flow edges, variables and variable uses

Our similarity search does not relate programs based on
semantic equivalence, à la Alon et al. [46]. Rather, close
programs, in our context, are codes that tend to behave simi-
larly when exposed to the same set of compiler optimizations.
Therefore, it is assumed that the chosen feature vectors will
relate programs by the effect that optimizations provoke on
them. Notice, nevertheless, that while this is the objective, this
result is not guaranteed to hold, given the statistical nature of
every experiment described in this paper.

IV. EVALUATION

This section investigates the six research questions enu-
merated below. Further studies are available in the extended
version of this work [38]:

RQA What is the mining rate of the infrastructure de-
scribed in Section III-A?

RQB Can ANGHABENCH better predict the impact of
compiler optimizations on programs?

RQC Can ANGHABENCH better approximate the proper-
ties of human-written benchmarks than code pro-
duced by other program synthesizers?

RQD How does ANGHABENCH compare to other syn-
thetic benchmarks as training data for a predictive
compiler?

RQE How does ANGHAZ compare to the state-of-the-art
binary reducer of Rocha et al [33]?

RQF Can we build a collection similar to ANGHABENCH
without the support of type inference?

Ground Truth. RQB presupposes the existence of a ground
truth, that is, a collection of “typical” real-world bench-
marks. Different benchmarks have been used at different times
and places throughout the still short history of compilers.
Therefore, finding a universally acceptable ground truth is an
endeavor of improbable success. In this paper, we settle for a
collection of 288 programs, which includes every benchmark
available in the LLVM test collection (275 programs), plus the
programs in the SPEC CINT CPU2006 suite (13 programs).
In all, this collection gives us 1,450,035 lines of code, spread
across 31,366 functions from 2,315 files.

A. RQA: Mining Throughput

This section investigates the rate in which the infrastructure
from Section III-A produces valid benchmarks. A benchmark
is considered valid when we can use both clang and gcc to
convert it to an object file.
Methodology: We set up our framework to collect and re-
construct code, until a threshold of 1,000,000 compilable
programs had been reached. The metric used for ranking
repositories by popularity was GitHub’s star feature. We
executed the extraction-reconstruction process in parallel on
an 8-core Intel i7-3770, with 16 GBs of RAM, running
Ubuntu 16.04. We set a maximum execution timeout of 5
seconds for the type inference’s constraint-solving step, as its
unification algorithm has a potentially exponential worst-case
performance [28]. We were concerned with answering two
questions about our framework’s performance:

• How long does it take, on average, to generate a compi-
lable program?

• What is the success rate of the program reconstructor?

Discussion: To reach the threshold of 1,000,000 programs, our
framework collected code from 148 repositories. It produced
1,044,023 compilable programs in 145 hours. This gives
us an average rate of one benchmark per 0.5 seconds. In
total, 1,882,687 candidate functions were extracted. Thus, the
success rate for the reconstruction process was approximately
55.5%. Only 3,666 reconstructions failed due to the timeout.
The most common reasons for failures were unpreprocessed
macros that were not syntactically valid in C.

B. RQB: Predicting Compiler Behavior
The goal of this section is to support the thesis that

ANGHABENCH predicts more accurately the behavior of com-
piler optimizations than other synthetic benchmarks suites.
Methodology: We shall investigate the code size reduction
obtained by two different optimization levels of clang: -O1
and -O3, when applied on different benchmark collections.
The choice for these two optimization levels is arbitrary; the
ANGHABENCH distribution contains the same study for other
optimization levels, and results are similar. We use the Mean
Square Prediction Error (MSPE) as a measure of accuracy,
defined as (predicted value − observed value)2. To carry out
predictions, we fit a linear model M in a synthetic benchmark,
relating the size of programs when compiled with clang -O0
and clang -O1 (or -O3). M is then used to predict program
size in the ground-truth collection.
Discussion: Figure 6 summarizes our findings. Each figure
shows a main diagonal, and the regression line. Because
optimizations tend to remove instructions, the regression line
is always under the main diagonal. We give the slope of the
regression line (Slp), and a measure of accuracy (Err). Err
denotes the ratio between the MSPE of a given collection
(ANGHABENCH, CSMITH, LDRGEN, DEEPSMITH) and the
MSPE of the ground-truth. We compute Err as follows:

1) Let ` be the regression line that we fit into a given
synthetic collection.

2) Let `g be the regression line that we fit into the ground-
truth collection.

3) Let mg be the MSPE that we obtain using `g on the
ground-truth collection (this is the standard definition of
MSPE).

4) Let m be the MSPE that we obtain when using ` also
on the ground-truth collection.

5) We let Err = m/mg .
The lower the value of Err, the better the predictor used

to compute it. We report the error for the second largest
collection in ANGHABENCH with 530K single functions (the
collection with 1M samples makes this experiment too slow).
Figure 6 shows that ANGHABENCH’s error is one order of
magnitude smaller than errors produced by the other collec-
tions. Programs from the CSMITH and from the LDRGEN
collections are easy to optimize. They are made to execute
without undefined behavior. To avoid undefinedness, they
contain hardcoded inputs. The excess of constants leads to
code that is easy to simplify. The programs generated by
DEEPSMITH are also easy to optimize, although they do not
contain hard-coded inputs (they are not meant to run). In this
case, optimization opportunities come from an excess of dead-
code.

C. RQC: Code Similarity
This paper defends the thesis that ANGHABENCH approx-

imates more closely the properties of real-world code than
other synthetic program sets. This section provides evidence
that such is the case. To this end, we shall rely on the measure
of “distance” between programs, which we discuss below.

500 500

4000 4000

0

50

0

400

0

50

0

400

AnghaBench -O1
(530K single funcs.)

CSmith -O1 CSmith -O3

LDRGen -O1 LDRGen -O3

600 600

60

0

60

0

Slp: 0.63
Err: 1.60

Slp: 0.20
Err: 33.39

Slp: 0.40
Err: 8.57

Slp: 0.58
Err: 1.12

Slp: 0.25
Err: 11.33

Slp: 0.40
Err: 4.72

DeepSmith -O1 DeepSmith -O3

Slp: 0.29
Err: 20.56

Slp: 0.29
Err: 9.35

40

0

40

0

400 400

1000 1000

0

100

0

100LLVM Test Suite -O1 LLVM Test Suite -O3

#i
ns

ts
 (x

10
0)

 a
t -

O
1

#i
ns

ts
 a

t -
O

3

#insts (x100) at -O0 #insts at -O0

Slp: 0.58
Err: 1.00

Slp: 0.61
Err: 1.00

AnghaBench -O3
(530K single funcs.)

Fig. 6. The effect of compiler optimizations on the size of programs.
Instructions are measured in hundreds.

Methodology: There exists a rich assortment of functions to
measure the distance between programs [47]. We have adopted
two of them: the Euclidean distance on numerical feature
vectors, and the MCoeff relation between two programs pro-
posed by Filho et al. [6]. The latter is a metric that measures
how similarly two programs respond to the same sequence
of compiler optimizations. Our choice is purely pragmatic:
the infrastructure described in Section III-B already simplifies
the computation of these two metrics. Furthermore, these two
functions meet the following properties, assuming that p1 and
p2 are programs: (i) d(p1, p2) ≥ 0, (ii) d(p1, p2) = d(p2, p1),
and (iii) d(p1, p2) ≤ d(p1, p3) + d(p3, p2), for any p3 /∈
{p1, p2}. Finally, although there exist similarity metrics that
are likely to be more expressive than those that we chose, e.g.,
à la DEEPSIM [48], they tend to be more costly to compute.
Discussion: Figure 7 shows the distance of each one of the
288 programs in the ground-truth to the different synthetic
collections. The distance of a program pg in the ground-truth
collection to a collection C of synthetic benchmarks is given
by d(pg, pc), where pc is the program in C that is the closest to
pg , and d is either the Euclidean distance on numerical feature
vectors, or MCoeff.

The average Euclidean distance from the ground-truth
collection to ANGHABENCH is 6.7x shorter than to the
CSMITH (available in our public distribution) collection, and
33.3x shorter than to the LDRGEN (available in our public
distribution—See Sec. III-B) collection. This difference is
smaller once we consider MCoeff, but it is still noticeable.
ANGHABENCH is approximately 21% and 29% closer to the
ground-truth than the CSMITH collection and the LDRGEN
collection, respectively.
Diversity. We use the notions of distance seen in this section
to argue that ANGHABENCH is more diverse than the other
synthetic collections that we use. The data in Figure 8 supports
this statement. For each point (Nb,K)(c,d) in Figure 8, we as-
sume that c is either ANGHABENCH, CSMITH, or LDRGEN,
and d is a distance function, e.g., numerical features, or
MCoeff. In this case, Nb is the number of benchmarks from
collection c that wins as one of the K closest programs to
some benchmark in the ground-truth collection. Thus, a very
homogeneous collection c would have all the programs with
the same features; leading to (Nb,K)(c,d) = K always. A
very diverse collection, in turn, would give us (Nb,K)(c,d) =
Ng×K, where Ng is the number of benchmarks in the ground-
truth set. Therefore, according to these definitions, the larger
(Nb,K)(c,d), the more heterogenous is collection c, and the
better it covers the feature space.

D. RQD: Predictive Compilation

This section provides evidence that ANGHABENCH yields
better training sets than other benchmark generators. To this
end, we have used different synthetic collections of bench-
marks to train YACOS, the predictive compiler implemented
by Filho et al. [6], [30]. YACOS uses a heuristic based on
Kennedy et al. [49]’s particle swarm optimization (PSO) to
find good optimization sequences.

Numerical
Feature
vectors

MCoeff
(the larger, the more similar)

AnghaBench
CSmith

LD
RG

en

AnghaBench
CSmith

LD
RG

en

Fig. 7. Distance between the ground-truth and different synthetic benchmarks.
Each collection is formed by the 10K largest programs out of a pool of 530K
candidates. Red dots are programs from the SPEC CPU2006 suite.

Methodology - Benchmarks: We have trained YACOS using
the three collections mentioned in Section III-B, each with
10K files: ANGHABENCH, CSMITH and LDRGEN. For the
last two collections, we produced 530K files, and took the
10K largest. We adopted this expedient for fairness, as the 10K
programs from ANGHABENCH were selected from a collection
of 530K benchmarks. Programs in the CSMITH collection are
larger; hence, training based on them takes much longer: on
average, three hours per file. The other two collections yield
faster training time: on average 20 minutes per file. In total,
training took 87 days, using 16 cores running at 3.40GHz.
Methodology - Training: Training consists in associating
each benchmark in the training set with 100 sequences of
optimizations—each sequence with 60 optimizations. These
optimizations come from a set of 83 passes available in LLVM.
Searching the feature space, in this setting, is the problem of
associating with the feature vector of a program P the best
list of optimizations for P . YACOS’s PSO is parameterized

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
Angha-NM	 CSmith-NM	 LdrGen-NM	

Angha-MC	 CSmith-MC	 LdrGen-MC	

211 benchmarks in our synthetic
collection win as the closest code to
some ground-truth program. 1,493
programs win among the 10 closest
to some ground-truth program.

Fig. 8. Number of programs that win for K-nearest of some program in the
ground-truth. The X-axis is K.

with an initial population of 100 particles, which evolves for
10 generations. Nevertheless, the exact implementation of this
heuristic is immaterial to the understanding of this paper—it
suffices to know that its quality varies with the training set.
Methodology - Prediction: Once training is complete,
YACOS uses similarity search (i.e., KNN with K=1) to find
the known program Pk in the training set that is the closest to
a given unknown program Pu. We have used the two measures
of distance seen in Section IV-C: Euclidean distance applied
on numerical feature vectors, and MCoeff. We let Sk be the
list of optimizations associated with Pk. From Sk, YACOS
can build different list of optimizations to be applied onto Pu

following four strategies:
• Elite: let Se ⊆ Sk be a subset of Sk (|Sk| = 100) formed

by the lists that improve on clang -Oz. We apply on Pu

every sequence in Se, and keep the best result. If Se is
empty, this strategy has no effect on Pu.

• JX, X ∈ {1, 10, 100}:] we apply on Pu Just the X best
sequences in Sk, and keep the best result. The sequences
in Sk are ordered by their effect on Pk. The most effective
optimization comes first.

Discussion: For validation, we use the ground-truth collection
mentioned in Section IV-C. Figures 9 and 10 summarize the
results of this experiment. A winning strategy is the pair in
{Elite, J1, J10, J100}×{ANGHABENCH, CSMITH, LDRGEN}
that yields the smallest bytecodes when applied to the val-
idation set. We omit results involving benchmarks produced
by DEEPSMITH. Due to their simplicity, their feature vectors
contain mostly zeros. Boldface fonts mark winners consid-
ering minimum, maximum, mean and median code reduction.
ANGHABENCH wins in most cases. When using the Euclidean
Distance with the Elite choice, ANGHABENCH reduces code
by 10.6% on average. If we use MCoeff, gains are higher:
11.1%. These results were not obtained in small programs:
the ground-truth used as validation contains the 13 integer
programs from SPEC CPU2006.

The gray cells in Figures 9 and 10 contain results for

AnghaBench CSmith LDRGen
min
avg
med
max
min
avg
med
max
#P

Elite J1 J10 J100

-46 -86 -83 -46 -15 -61 -61 -33 -121 -145 -103 -33

10.6 2.1 8.6 10.7 0.1 3.9 8.3 10.6 4.4 -7.3 6.5 10.7

8.4 3.5 7.4 8.4 0.0 3.9 7.6 8.5 3.5 -4.9 4.8 8.3

41.2 33.2 36.4 41.2 12.0 34.2 35.3 39.6 32.6 16.6 32.6 44.4

0.0 0.1 0.0 0.0 2.9 0.0 0.0 0.3 0.3 0.8 0.0 0.6

11.1 8.4 9.7 11.0 7.8 7.6 9.5 11.0 8.2 4.6 8.4 11.1

8.5 6.5 7.9 8.5 8.0 6.3 7.7 8.6 6.5 3.3 6.6 9.0

41.2 33.2 36.4 41.2 12.0 34.2 35.3 39.6 32.6 16.6 32.6 44.4

280 195 269 282 12 211 267 282 199 39 250 280

Elite J1 J10 J100 Elite J1 J10 J100

Fig. 9. Percentage of code reduction, measured over number of LLVM
bytecodes, produced from the ground truth using YACOS parameterized with
the Euclidean distance. #P reports the number of programs in which we have
observed positive results over clang -Oz. Averages are geometric mean.

programs in which we could find a list of optimization better
than clang -Oz. If we consider average values for these
programs, then the difference between ANGHABENCH and
the other collections is less apparent, as we are counting
only positive results. However, ANGHABENCH is able to
find non-trivial lists of optimization for more programs than
the other synthetic collections. For instance, using the Elite
strategy with Euclidean distance (Fig. 9), YACOS trained with
ANGHABENCH was able to reduce the size of 280 programs
(compared with clang -Oz), vs only 12 if we train YACOS
with CSMITH, and 199, if we train YACOS with LDRGEN.

CSmith LDRGen
min
avg
med
max
min
avg
med
max
#P

Elite J1 J10 J100 Elite J1 J10 J100 Elite J1 J10 J100

-38 -98 -61 -38 -21 -148 -59 -47 -55 -176 -70 -45

11.1 4.8 9.6 11.1 0.7 -2.5 6.5 10.0 9.7 0.4 8.5 10.7

9.3 4.8 8.1 9.3 0.0 -1.2 4.5 8.2 7.8 3.2 6.8 8.6

41.2 41.2 41.2 41.2 31.4 21.5 38.0 38.5 37.4 37.4 37.4 37.4

0.8 0.0 0.3 0.8 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1

11.5 8.3 10.6 11.4 10.5 5.6 7.9 10.6 10.8 7.6 9.5 11.0

9.5 6.4 8.7 9.5 7.2 4.2 5.3 8.3 8.3 5.5 7.1 8.8

41.2 41.2 41.2 41.2 31.4 21.5 38.0 38.5 37.4 37.4 37.4 37.4

282 231 273 283 24 112 251 277 269 192 271 282

AnghaBench

Fig. 10. Percentage of reduction (same as Fig. 9) achieved on the ground
truth using the MCoeff distance.

Using the ground-truth as the training set. We have also
used the ground-truth (288 programs, including SPEC CINT
CPUT2006) as the training set to predict good optimization
sequences to itself. In this experiment, we have used a leave-
one-out methodology with the MCoeff distance. Leave-one-
out is applied per benchmark. The ground-truth is formed
by the combination of 36 different benchmark collections.
Thus, we use 35 suites as the training set, and one suite
as the test set. On the J1 strategy, ANGHABENCH finds a
better list of optimization than clang -Oz for 231 out of
288 programs. The ground-truth beats clang -Oz in only 30
programs. The average size reduction across all programs is
4.8% using ANGHABENCH (Figure 10) vs -14.2% using the

ground-truth. On J10, ANGHABENCH outperforms clang -Oz
in 273 programs, and the ground-truth in 109. On J100, they
obtain statistically similar results: 283 vs 284 improvements.
We emphasize that the ground-truth is much smaller than
ANGHABENCH: we are comparing a training set of 10,000
samples with a training set with strictly less than 288.

E. RQE: Code Size Reduction
This section provides some perspective on the code size

reduction achieved by a compiler trained with ANGHABENCH.
To this end, we analyze the effects of this compiler on
MIBENCH [50]. MIBENCH has been used by Rocha et al. [33]
as a challenging case study. Rocha et al. have designed and
implemented a technique to reduce code size by merging
common sequences of instructions. Their Function Merging by
Sequence Alignment (FMSA) approach excels when applied
onto large code bases, as there are more opportunities for
merging redundant code. However, their technique yields
poor results when applied onto small programs—a natural
consequence of a statistical lack of redundancies. Rocha et
al. have used MIBENCH to demonstrate this last point.
Methodology: We compile MIBENCH with YACOS trained
with the 10K largest programs from ANGHABENCH. Program
similarity is measured with the Euclidean distance. Euclidean
distance is used in this experiment because it is the default pro-
gram metric used in YACOS. We use the subset of MIBENCH
available in the LLVM test suite.
Discussion: Figure 11 reports the results that we have obtained
after compiling MIBENCH with YACOS. The baseline is clang
-Os. This is the same baseline adopted by Rocha et al. For
reference, Figure 11 also reports, on top, the percentages of
code size reduction observed by Rocha et al. Numbers refer
to the size of the object file produced after compilation.

-10	

-5	

0	

5	

10	

15	

20	

Percentage of code reduction reported by Rocha et al., relative to clang -Os

Pe
rc

en
ta

ge
 o

f c
od

e
re

du
ct

io
n

re
la

tiv
e

to
 c

la
ng

 -O
s

pa
tric

ia
dij

ks
tra

qs
ort sh
a

ba
sic

math
CRC32 FF

T
rijn

da
el

jpe
g

su
sa

n
str

se
arc

h
bit

co
un

t
4.

2

0.
7

20
.6

2.
0

1.
2

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

blo
wfis

h
0.

0

0.8
4

1.7
5

2.9
4 4.3
4 5.6
2

5.8
5

8.5
3 10

.54
10
.96

11
.02 11
.42

12
.71

18
.39Elite

J1
J10
J100

Fig. 11. Percentage of code size reduction achieved on MIBENCH, measured
over size of object files, in bytes. Numbers on top are percentage of reduction
reported by Rocha et al. [33]. Numbers at the bottom are percentage of
reduction achieved by YACOS, using the Elite approach.

The amount of code size reduction obtained by YACOS
tends to be higher than the reduction achieved by FMSA; how-
ever, the bad performance of FMSA on MIBENCH had been

noticed by Rocha et al. [33]. As we have mentioned, FMSA
does better the larger the target code base, for in this case,
there will be more redundancies to explore2. We emphasize
that these numbers cannot be directly compared: they were
not produced in the same empirical setup. Nevertheless, in at
least eight benchmarks from MIBENCH, where Rocha et al.
have reported no gains, we could observe reductions of 6.0%
on average (geo-mean), compared to clang -Os. Another fact
that this experiment highlights is that clang -Os and clang -
Oz still leave much room for improvement. In benchmarks like
bitcount and strsearch it is possible to find sequences
of optimizations that are almost twice as efficient as clang -
Os, and approximately 8% better than clang -Oz. Finally, it
must be understood that FMSA is a compiler optimization,
whereas our approach is rather a replacement to the LLVM
pass manager. In other words, it would have been possible to
include FMSA as one of the optimizations of YACOS’s search
strategy. We have not performed this new experiment simply
because FMSA is not available by default in LLVM.

F. RQF: The Role of Type Inference

Provided that we can mine open-source repositories, and
there are so many of them, one could expect that some of
these programs naturally compile without type reconstruction.
In this section, we show that such code base is worse than
ANGHABENCH when used to train a predictive compiler.

1) The Need for Type Inference: One of the benchmark col-
lections distributed in our website consists of 529,498 C func-
tions and their respective LLVM bytecodes. This collection of
over half-a-million compilable benchmarks has been produced
out of 54,431 files taken from 79 open source repositories. Out
of these files, we extracted 698,449 functions, sizes varying
from one line to 45,263 lines of code (Radare2’s assembler).
Thus, we produced an initial code base of 698,449 C files,
each file containing a single function. We run PsycheC with
a timeout of 30 seconds on this code base. PsycheC has
been able to reconstruct dependencies of 529,498 functions;
thus, ensuring their compilation. Compilation consists in the
generation of an object file out of the function— a task
performed with clang 6.0.1.

Out of the 698,449 functions, 31,935 were directly compi-
lable as-is, that is, without PsycheC’s inference. To perform
automatic compilation, we invoke clang on a preprocessed C
file containing an individual function extracted as-is. Hence,
without type inference, we could ensure compilation of 4.6%
of the programs. With type inference, we could ensure com-
pilation of 75,8% of all the programs. Failures to reconstruct
types were mostly due to macros that were not syntactically
valid in C without preprocessing.

2Rocha et al. have published a new code size reduction technique that
extends sequence alignment to SSA-form programs [51]. We believe that their
new algorithm, SalSSA, is the most effective size reduction technique in use
today. When applied onto MIBENCH, SalSSA achieves a geo-mean reduction
of 1.4% to 1.6%; twice as much as FMSA. However, a direct comparison
with our work is not possible, for they reported results only for ARM.

2) On the Consequence of using Small Functions: As we
have mentioned, we can compile automatically less than 5%
of the functions that we download, even considering all the
dependencies in the C files where these functions exist. Nev-
ertheless, given that we can download millions of functions,
5% is already enough to give us a non-negligible number of
benchmarks. However, these compilable functions tend to be
very small. The median number of LLVM bytecodes is seven
(in contrast to 36, using type inference). Said functions are
unlikely to contain features such as arrays of structs, type casts,
recursive types, double pointer dereferences, etc. It is typical
that developers separate definitions from implementations into
different files in the C ecosystem. It suffices to have one
missing file or the wrong version of one library, and the entire
program will fail to compile.

bas
icm

ath

bitc
ou

nt

blow
fis

h

CRC32 FF
T

dijks
tra jpeq

patr
icia qso

rt

rijn
dae

l
sh

a

str
ing

se
arc

h
su

sa
n-15	

-10	

-5	

0	

5	

10	

15	

20	

25	

30	

Myst.	 Comp.	

Pe
rc

en
ta

ge
 o

f v
ar

ia
tio

n
on

 n
um

be
r o

f L
LV

M

by
te

co
de

s
(in

st
ru

ct
io

ns
) i

n
th

e
fin

al
 li

nk
ed

 fi
le

Angha

Fig. 12. Performance of YACOS (with the Elite choice) on the MIBENCH
programs. We use two training sets: ANGHABENCH (10K largest functions)
and the functions that we can compile without type inference. Percentage of
reduction is measured with regards to clang -Oz on the number of LLVM
bytecodes in optimized programs.

Due to their small size, the naturally compilable functions
are not effective to tune a compiler. Figure 12 demonstrates
this fact with data. The figure compares YACOS, when trained
with our collection of half-a-million functions (from which
we selected the 10K largest samples), or with the collection
of 31.9K directly compilable functions (from which, again,
we selected the 10K largest functions). The small size of
the latter group prevents it from being an effective training
set. For instance, using these functions, YACOS reduces
the size of MiBench’s bitcount by 10%, whereas using
ANGHABENCH, it achieves 16.9%. In susan, the naturally
compilable functions lead to an increase of code size (5.4%),
whereas ANGHABENCH reduces it by 1.7%. Although there
are benchmarks in MIBENCH where the naturally compilable
functions lead to more compression, these gains are close to
those obtained by ANGHABENCH, and seldom occur.

V. RELATED WORK

This paper deals with synthesis of benchmarks and code size
reduction. Because the former has been discussed in Section II,

we now focus on the latter. Yet, we start our discussion
mentioning some work on the synthesis of benchmarks.
Synthesis of Benchmarks. The creation of synthetic bench-
marks has become a frequent focus of research. Random
program generators, such as CSMITH [31], LDRGEN [32] and
Orange3 [52], [53] have been successfully used to produce C
programs for stress-testing compilers, often finding correctness
bugs in industrial implementations [54]. Although conceived
to find bugs, these tools have also been used to improve
the quality of the optimized code emitted by mainstream C
compilers [55], [56]. Nevertheless, such tools, given their
goals, are not designed to produce realistic code.

Recent effort to create human-like C programs has leveraged
Deep Learning techniques to generate code similar to real-
world examples. CLGEN [14] uses this approach to generate
OpenCL kernels, while DEEPSMITH [45] generalizes this
technique to other languages. Nonetheless, we have found that
DEEPSMITH has trouble synthesizing non-trivial C programs
when trained with corpora of open source projects, as we
have explained in Section II-B. We could not use it to train
YACOS, in Section IV-D, because the feature vectors of
its programs contained mostly zeros. Following a different
approach, Richards et al. have produced realistic JavaScript
benchmarks, out of monitored browser sections [57]. Type re-
construction is not an issue in this scenario, because JavaScript
is dynamically typed. One shortcoming of this modus operandi
is scalability, because it is not fully automatic. Richards’
technique still requires users to create a browsing section,
which will then be instrumented.
Code Size Reduction. Several compiler transformations have
code reduction as either the main goal or a desirable con-
sequence [33], [51], [58], [59], [60], [61], [62]. Often, such
techniques involve Code Factoring, the identification of re-
dundant code within the program. Code motion techniques
search for identical instructions and merge them to avoid
redundancy [62], [63], [64], [63]. Function Merging is the
other main category in the field. This optimization finds
functions that are semantically similar or equivalent, and
generates new functions to replace them [65], [66], [67]. It
is possible to merge even functions that are slightly different.
When functions that meet a similarity threshold are found, a
new procedure is created. The new function contains additional
control-flow to choose between which original implementation
should be executed [33], [51], [68].

In spite of program compression being an old problem,
effective and elegant code size reduction techniques have been
discovered as recently as the current year [51]. Nevertheless,
the contributions of this paper are orthogonal to these tech-
niques, because we do not propose new optimizations. Rather,
our synthetic benchmarks can help a compiler identify when
each of these optimizations might be profitable. To support
this observation, in Section IV-E we showed how to augment
a C compiler with knowledge extracted from our benchmarks.
Autotuning for Binary Size Reduction. Code size has been
a common objective function of predictive compilers. The
earliest works in this direction used genetic algorithms to

continually improve the size of the code generated for target
applications [42], [69], [70]. These early approaches evolve
a sequence of optimizations for each individual program;
thus, search runs until convergence for each program being
optimized. The technique described in section IV-E, on the
other hand, can simply find the program in the training set that
better approximates the target application. Therefore, once the
predictive model has been trained, the impact on compilation
time is minimal.

VI. CONCLUSION

This paper has presented a framework to produce compil-
able C programs out of open-source repositories, which we
have used to generate more than one million benchmarks.
Compilation is ensured via type inference. Different appli-
cations of these benchmarks have been shown, with empha-
sis on predictive size reduction. In this regard, we showed
that in benchmarks like bitcount and blowfish, from
MIBENCH, it is possible to find sequences of optimizations
that are about 15% better than clang -Os, and approximately
8% better than clang -Oz.

a) License: Although the process of building the
compilable benchmarks is automatic, adding the licenses
to the files is not. To fulfill this task, we need to
find the license(s) used in the repository, which is not
necessarily present in the program’s source code. We have
preserved the original licenses of a subset of 128,411 files
from the following repositories: FFmpeg, DeepMind,
openssl, SoftEtherVPN, libgit2, php-src,
radare2, darwin-xnu, mongoose, reactos, git,
nodemcu-firmware, redis, h2o, and obs-studio.
These repositories give us a total of 38.9K C files. These files
have been organized as an external LLVM test suite.

b) Further uses of ANGHABENCH: In addition to the ap-
plications seen in this paper, we are aware of a few other uses
of ANGHABENCH. For instance, ANGHABENCH has been
used to: (i) stress-test two C-to-Verilog compilers: LEGUP and
VIVADO; (ii) test routing algorithms that convert C programs
to FPGA circuits; (iii) fine-tune register assignment heuristics;
(iv) compare the speed of C parsers; (v) check the effectiveness
of a termination checker, the ULTIMATE Automizer; and (vi)
scale up program synthesis, following an idea proposed by
Bornholt and Torlak [71].

c) Software: ANGHABENCH is publicly available at http:
//cuda.dcc.ufmg.br/angha. In addition to the benchmarks, this
webpage contains links to the infrastructure used to build
them, including crawler, function extractor and type inference
engine [28].

ACKNOWLEDGEMENT

This work has been made possible by grants from different
research agencies, namely CNPq, CAPES and FAPEMIG. We
thank Luigi Soares and Augusto Noronha for reading a draft
of this paper. We also thank the CGO reviewers, for all the
time and expertise that they have put into our manuscript.

REFERENCES

[1] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A
survey on compiler autotuning using machine learning,” Comput. Surv.,
vol. 51, no. 5, pp. 96:1–96:42, 2018.

[2] H. Leather and C. Cummins, “Machine learning in compilers: Past,
present and future,” in FDL. Washington, DC, USA: IEEE, 2020.

[3] Z. Wang and M. F. P. O’Boyle, “Machine learning in compiler opti-
mization,” Proceedings of the IEEE, vol. 106, no. 11, pp. 1879–1901,
2018.

[4] A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, and
C. Silvano, “COBAYN: Compiler autotuning framework using bayesian
networks,” TACO, vol. 13, no. 2, pp. 21:1–21:25, 2016. [Online].
Available: http://doi.acm.org/10.1145/2928270

[5] M. Namolaru, A. Cohen, G. Fursin, A. Zaks, and A. Freund, “Practical
aggregation of semantical program properties for machine learning based
optimization,” in CASES. New York, NY, USA: ACM, 2010, pp. 197–
206.

[6] J. F. Filho, L. G. A. Rodriguez, and A. F. da Silva, “Yet another
intelligent code-generating system: A flexible and low-cost solution,”
J. Comput. Sci. Technol., vol. 33, no. 5, pp. 940–965, 2018.

[7] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati, “Scaling
up superoptimization,” in ASPLOS. New York, NY, USA: ACM, 2016,
pp. 297–310.

[8] T. C. de Souza Xavier and A. F. da Silva, “Exploration of compiler
optimization sequences using a hybrid approach,” Computing and Infor-
matics, vol. 37, no. 1, pp. 165–185, 2018.

[9] M. Novaes, V. Petrucci, A. Gamatié, and F. M. Q. a. Pereira, “Compiler-
assisted adaptive program scheduling in big.little systems: Poster,” in
PPoPP. New York, NY, USA: ACM, 2019, pp. 429–430.

[10] J. K. V. Sreelatha, S. Balachandran, and R. Nasre, “CHOAMP: cost
based hardware optimization for asymmetric multicore processors,”
Trans. Multi-Scale Computing Systems, vol. 4, no. 2, pp. 163–176, 2018.

[11] S. Bansal and A. Aiken, “Binary translation using peephole superopti-
mizers,” in OSDI. Berkeley, CA, USA: USENIX Association, 2008,
pp. 177–192.

[12] R. Bunel, A. Desmaison, M. P. Kumar, P. H. S. Torr, and P. Kohli,
“Learning to superoptimize programs,” in ICLR. Toulon, France:
OpenReview, 2017.

[13] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic program optimiza-
tion,” Commun. ACM, vol. 59, no. 2, pp. 114–122, 2016.

[14] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “Synthesizing
benchmarks for predictive modeling,” in CGO. Piscataway, NJ, USA:
IEEE, 2017, pp. 86–99.

[15] G. Poesia, B. C. F. Guimarães, F. Ferracioli, and F. M. Q. Pereira, “Static
placement of computation on heterogeneous devices,” PACMPL, vol. 1,
no. OOPSLA, pp. 50:1–50:28, 2017.

[16] D. Simon, J. Cavazos, C. Wimmer, and S. Kulkarni, “Automatic
construction of inlining heuristics using machine learning,” in CGO.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 1–12.

[17] P. Zhao and J. N. Amaral, “To inline or not to inline? enhanced inlining
decisions,” in LCPC. Heidelberg, Germany: Springer, 2003, pp. 405–
419.

[18] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006. [Online].
Available: http://doi.acm.org/10.1145/1186736.1186737

[19] R. Bagrodia, R. Meyer, M. Takai, Y.-a. Chen, X. Zeng, J. Martin, and
H. Y. Song, “Parsec: A parallel simulation environment for complex
systems,” Computer, vol. 31, no. 10, pp. 77–85, 1998. [Online].
Available: https://doi.org/10.1109/2.722293

[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC. Washington, DC, USA: IEEE, 2009, pp. 44–54.

[21] L.-N. Pouchet and T. Yuki, “PolyBench/C 4.2.1: The polyhedral C
benchmark suite,” 2018. [Online]. Available: http://polybench.sf.net

[22] G. Fursin and O. Temam, “Collective optimization: A practical collab-
orative approach,” Trans. Archit. Code Optim., vol. 7, no. 4, pp. 20:1–
20:29, 2010.

[23] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber,
H. Simon, V. Venkatakrishnan, and S. Weeratunga, “The
NAS parallel benchmarks,” Int. J. High Perform. Comput.
Appl., vol. 5, no. 3, pp. 63–73, 1991. [Online]. Available:
http://dx.doi.org/10.1177/109434209100500306

[24] R. Barik, N. Farooqui, B. T. Lewis, C. Hu, and T. Shpeisman, “A
black-box approach to energy-aware scheduling on integrated cpu-gpu
systems,” in CGO. New York, NY, USA: ACM, 2016, pp. 70–81.

[25] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: A
machine learning based approach,” in PPoPP. New York, NY, USA:
ACM, 2009, pp. 75–84.

[26] Z. Wang and M. F. O Boyle, “Partitioning streaming parallelism for
multi-cores: A machine learning based approach,” in PACT. New York,
NY, USA: ACM, 2010, pp. 307–318.

[27] Y. Wen, Z. Wang, and M. F. P. O’Boyle, “Smart multi-task scheduling
for opencl programs on CPU/GPU heterogeneous platforms,” in HiPC.
Los Alamitos, CA, USA: IEEE, 2014, pp. 1–10.

[28] L. T. C. Melo, R. G. Ribeiro, M. R. de Araújo, and F. M. Q. a.
Pereira, “Inference of static semantics for incomplete c programs,”
Proc. ACM Program. Lang., vol. 2, no. POPL, pp. 29:1–29:28, Dec.
2018. [Online]. Available: http://doi.acm.org/10.1145/3158117

[29] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO. Washington, DC, USA:
IEEE, 2004, pp. 75–. [Online]. Available: http://dl.acm.org/citation.
cfm?id=977395.977673

[30] A. F. Zanella, A. F. da Silva, and F. M. Q. ao Pereira, “YACOS: a com-
plete infrastructure to the design and exploration of code optimization
sequences,” in SBLP. New York, NY, USA: ACM, 2020, pp. 56–63.

[31] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in PLDI. New York, NY, USA: ACM, 2011, pp.
283–294.

[32] G. Barany, “Liveness-driven random program generation,” in LOPSTR.
Heidelberg, Germany: Springer, 2017, pp. 112–127.

[33] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Function merging by sequence alignment,” in CGO. Piscataway, NJ,
USA: IEEE Press, 2019, pp. 149–163.

[34] ISO-Standard, “ISO/IEC 9899:tc3 - committee draft of the C99 stan-
dard,” 2011.

[35] R. Dyer, H. Rajan, and Y. Cai, Language Features for Software Evo-
lution and Aspect-Oriented Interfaces: An Exploratory Study. Berlin,
Heidelberg: Springer-Verlag, 2013, p. 148–183.

[36] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining billions of
ast nodes to study actual and potential usage of java language features,”
in ICSE. New York, NY, USA: ACM, 2014, p. 779–790.

[37] J. Eyolfson and P. Lam, “How C++ developers use immutability decla-
rations: An empirical study,” in ICSE. Washington, DC, USA: IEEE,
2019, p. 362–372.

[38] A. F. da Silva, B. Kind, J. W. M. aes, J. Rocha, B. G. aes, and F. M. Q.
ao Pereira, “Anghabench: a synthetic collection of benchmarks mined
from open-source repositories,” Universidade Federal de Minas Gerais,
Tech. Rep. 01-2020, 2020.

[39] F. M. Q. a. Pereira, G. V. Leobas, and A. Gamatié, “Static prediction
of silent stores,” ACM Trans. Archit. Code Optim., vol. 15, no. 4, pp.
44:1–44:26, 2018.

[40] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois et al.,
“Milepost GCC: Machine learning enabled self-tuning compiler,” Inter-
national journal of parallel programming, vol. 39, no. 3, pp. 296–327,
2011.

[41] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly,
“Meta optimization: Improving compiler heuristics with machine
learning,” in Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, ser. PLDI ’03.
New York, NY, USA: ACM, 2003, pp. 77–90. [Online]. Available:
http://doi.acm.org/10.1145/781131.781141

[42] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing for
reduced code space using genetic algorithms,” in Proceedings of the
ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools for
Embedded Systems, ser. LCTES ’99. New York, NY, USA: ACM, 1999,
pp. 1–9. [Online]. Available: http://doi.acm.org/10.1145/314403.314414

[43] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams, “Using
machine learning to focus iterative optimization,” in Proceedings of the
International Symposium on Code Generation and Optimization, ser.
CGO ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp.
295–305. [Online]. Available: http://dx.doi.org/10.1109/CGO.2006.37

[44] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Trans.
Inf. Theor., vol. 13, no. 1, pp. 21–27, 2006.

[45] C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler
fuzzing through deep learning,” in ISSTA. New York, NY, USA: ACM,
2018, pp. 95–105.

[46] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proc. ACM Program. Lang., vol. 3,
no. POPL, pp. 40:1–40:29, 2019.

[47] R. Naseem, O. Maqbool, and S. Muhammad, “Improved similarity
measures for software clustering,” in CSMR. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 45–54.

[48] G. Zhao and J. Huang, “DeepSim: Deep learning code functional
similarity,” in ESEC/FSE. New York, NY, USA: ACM, 2018, p.
141–151.

[49] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of the International Conference on Neural Networks, vol. 4, Nov
1995, pp. 1942–1948 vol.4.

[50] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in WWC. Washington, DC, USA: IEEE, 2001, pp.
3–14.

[51] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Effective function merging in the ssa form,” in PLDI. New York, NY,
USA: ACM, 2020, p. 854–868.

[52] E. Nagai, A. Hashimoto, and N. Ishiura, “Reinforcing random testing of
arithmetic optimization of c compilers by scaling up size and number of
expressions,” IPSJ Trans. System LSI Design Methodology, vol. 7, pp.
91–100, 2014.

[53] K. Nakamura and N. Ishiura, “Introducing loop statements in random
testing of c compilers based on expected value calculation,” in Proc. the
Workshop on Synthesis And System Integration of Mixed Information
Technologies (SASIMI 2015), 2015, pp. 226–227.

[54] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Comput. Surv., vol. 53, no. 1, 2020.

[55] A. Hashimoto and N. Ishiura, “Detecting arithmetic optimization oppor-
tunities for c compilers by randomly generated equivalent programs,”
IPSJ Transactions on System LSI Design Methodology, vol. 9, pp. 21–
29, 2016.

[56] G. Barany, “Finding missed compiler optimizations by differential
testing,” in Proceedings of the 27th International Conference on
Compiler Construction, ser. CC 2018. New York, NY, USA:
ACM, 2018, pp. 82–92. [Online]. Available: http://doi.acm.org/10.1145/
3178372.3179521

[57] G. Richards, A. Gal, B. Eich, and J. Vitek, “Automated construction
of javascript benchmarks,” SIGPLAN Not., vol. 46, no. 10, p. 677–694,
2011.

[58] J. Knoop, O. Rüthing, and B. Steffen, “Partial dead code elimination,”
SIGPLAN Not., vol. 29, no. 6, pp. 147–158, Jun. 1994. [Online].
Available: http://doi.acm.org/10.1145/773473.178256

[59] J. Cocke, “Global common subexpression elimination,” SIGPLAN
Not., vol. 5, no. 7, pp. 20–24, Jul. 1970. [Online]. Available:
http://doi.acm.org/10.1145/390013.808480

[60] J. Ernst, W. Evans, C. W. Fraser, T. A. Proebsting, and S. Lucco, “Code
compression,” in Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Language Design and Implementation, ser. PLDI ’97.
New York, NY, USA: ACM, 1997, pp. 358–365. [Online]. Available:
http://doi.acm.org/10.1145/258915.258947

[61] A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson, “Using
peephole optimization on intermediate code,” ACM Trans. Program.
Lang. Syst., vol. 4, no. 1, pp. 21–36, Jan. 1982. [Online]. Available:
http://doi.acm.org/10.1145/357153.357155

[62] P. Briggs and K. D. Cooper, “Effective partial redundancy elimination,”
in Proceedings of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, ser. PLDI ’94. New York,
NY, USA: ACM, 1994, pp. 159–170. [Online]. Available: http:
//doi.acm.org/10.1145/178243.178257

[63] G. Lóki, Á. Kiss, J. Jász, and Á. Beszédes, “Code factoring in gcc,” in
Proceedings of the 2004 GCC Developers’ Summit, 2004, pp. 79–84.

[64] A. Dreweke, M. Worlein, I. Fischer, D. Schell, T. Meinl, and
M. Philippsen, “Graph-based procedural abstraction,” in Proceedings
of the International Symposium on Code Generation and Optimization,
ser. CGO ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 259–270. [Online]. Available: https://doi.org/10.1109/CGO.2007.14

[65] S. Tallam, C. Coutant, I. L. Taylor, X. D. Li, and C. Demetriou, “Safe
icf: Pointer safe and unwinding aware identical code folding in gold,”

in GCC Developers Summit, 2010. [Online]. Available: http://gcc.gnu.
org/wiki/summit2010?action=AttachFile&do=view&target=tallam.pdf

[66] M. Liska, “Optimizing large applications,” arXiv, 2014.
[67] L. C. Infrastructure. (2019, nov) Mergefunctions pass, how it

works. [Online]. Available: http://llvm.org/docs/MergeFunctions.html#
mergefunctions-pass-how-it-works

[68] T. J. Edler von Koch, B. Franke, P. Bhandarkar, and A. Dasgupta,
“Exploiting function similarity for code size reduction,” in Proceedings
of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems, ser. LCTES ’14. New York,
NY, USA: ACM, 2014, pp. 85–94. [Online]. Available: http:
//doi.acm.org/10.1145/2597809.2597811

[69] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson,
M. Bailey, Y. Paek, and K. Gallivan, “Finding effective optimization
phase sequences,” in Proceedings of the 2003 ACM SIGPLAN
Conference on Language, Compiler, and Tool for Embedded Systems,
ser. LCTES ’03. New York, NY, USA: ACM, 2003, pp. 12–23.
[Online]. Available: http://doi.acm.org/10.1145/780732.780735

[70] D. Fatiregun, M. Harman, and R. M. Hierons, “Evolving transformation
sequences using genetic algorithms,” in Source Code Analysis and
Manipulation, Fourth IEEE International Workshop on, Sep. 2004, pp.
65–74.

[71] J. Bornholt and E. Torlak, “Scaling program synthesis by exploiting
existing code,” 2015.

